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prerequisites:  differential geometny

basic  Compiex anaiysis  ( holomorpwic  Runchivas)

Remarks :  Riemann surfaces Ore useful but not essential

Mgebmic Opometny i relared, but nov really used.

Books:  Huybrechts " compex aeometny"

Gwiffiths 4 Wards " principles of algebraic geometry" (cHo and CH1)
There  will be printed  nhotes tv (ome \over, but ave hor a rep\dement for lecture wnotes.

4 example Sheets % classes —  fist o Come out on  22™ of 3an.



1. Introduction

Recall : Smooth , real, n- dimensional wmanifold M - Mausdorff ond Second- Countable, covered by charts:  homeomorphisms
®: Ue = Va, where Ux CM is open ond Conmected, Vo CR™ with M= p Ux,  Wpe 9™ s smoth (€®) on

s domain C R" .

Basic idea: replace R" i ¢" and €% wim holomorphic (G\%® Eknown as (ompiex analytic) , to  obtain a

?

]
holomorphic  Stucture”.
We will need some pasics of several (Compiex \Variables.

Recall  first about one complex variable. et W CC  be open suppose F: W=>C s smooth in the [R-sense.

?

Wwe say £ is holomorphic iff

¢ #i5  Complex onalytic ( represented oy Some  Convergemt power series, f(2)= Z cn(x-a)" vaiid & 1lz-al<eycu)

Sk s Complex differentiable (l'll- smosth + Cauchy - Riemann equovions hod :
5t Tz waiy ? 2
’ = R ) P ) 2 ? s 2
23 'z(a_-.."i,): 33'35.(‘0—1""93)
e _
Cauchy —Riemann : 2?0 ok
?f of - -
A general  Smeoth £a): Flo) *+ 2a (o)a 4 :_i“) ¥+ 0(‘-!) (az0)
- of - . - .
the differential df = of +3§ 7 3, d3 3z a= as x - 0 (dr= daasidy, dI:dx-idy)
L £(w)
Cauchy TIntegml formula: £(2) = am j wo 9% 1 ‘w'u"& cu
lw-2l=r

Now let wcce" be open, and §: W € be C' - differentiable in 4he rea\ semse. Then £ is  caved pholomorphic

it g-,m sz B(Ry,., 3)-1, 3, Fjar, ..., ¥n) (Fix au wwj) s holomorphic  in 2 ¥ jei,.., 0-
268 X 2 .2 . .
j-e. 23, 0 on WU Jheun, where -a;). s i( 311) 41 2y; ) 2js wj ANy

B Shorthand & 4nis wil be Df =0.
standard disc C @
N8 it \s often Convenient + set U as a polydisc: A, X..-XAn = Yrea": I 2j5-09jler; V3}
QeC , cj>0

Cauchy Integral Formuta : if £ : A, x---Aa = € is holomorphic , then
—_—
A
fa) = = J‘ W e..dwa
(z“.")l\ (wy=31) ... (wa-3n) ¥ xeA W = (w”".' W‘)
lwj -aj\=rj
A}

N.B. We're integrating over  Submanibld % A when n>i.

Proof (gisﬂ can do repeated integration in eaCh wj o, J Va0 ond kreat wj4r,..., Wa  Os  parameters.



HEIRERATY . \

- — . - H “-.- -q "" . .
Power series : holomorphicity < £(2) * _Z 2%'... 33" (a) (2 -as) (2n-a0) i int

1t £ - ((“,...,C“\ rhwe et - ¢M, then £ s holomorphic iff each £j 1 +4ve. T+ is Caled  biholamorphic if
open

i is bijeive and £ and €' are  both  holomorphic.

Complex Jacobian - of @  folomorphic  funckion £: (f1,--, Em) , +nen

3 r = of
(€), — m)
?*J kz |,..,m
)s Voo
defines @ € - linear map €% €™ I Iy it surjective, PN we say % 15 0 regwar poin of % -

I WE C™M, 4hen F VYxe€ £7'(W 05 ceqular, then we can w a regular __value.

. du ot
Suppose m:=n=1 , ond write £ = wtivy & is holo. Then Iw(F)= % Y] - 23 _°
ov a Similar B_E
. 11 2y Y
« -P N o 4 [\] thought of as
ie. bV oapeR (P u) ( ° u-ip} o complex: mabix
We can extend  this o dimensions m,n )
( RIS )
For a general function, Tw( €) regarded as a complex matrix  is  similar tv 0  3@®) for any hoo. £
When wm=n Gre equal, we get Q square matiy, and
det (Tp()) = det(3(s)) dex ( (D))
= ldet (3ol %0
In opartimtar, 0 when  T(f) is non-Singular.
(Holo) Tnverse funciion  Theorem: ¢ W,V C C" open ond F: W >V hoomorphic With € W a regwar point,

then 3 nbheod Uo of 2 sit £ maps WUo biholomorpnically onte 'S image.

Dfn: 0 complex N-fild M 5 2 hausdorff second (ountable tepological  Space  with complex  coord. chards:
homeo mophisms Wit ki SM > 2 (ui) €€, wnere otk Wi and its image are open and coamected seis,

fwhh ot Vi, Wi 0% are helmogwic o ®(uinuj) , and M : UUi.
I pe Wi, i) = (xy,,%n) e cowplex  |ocal  Coordinates.

Remark :' Wwe can iwink o M as a  real  2n - dimensional  mmanifold  Wwith & choice  of " holomapwic adas” :

Ty, Olien refered to as we  underlying  real smooth manifold.

Dfn: let M, N pe 4wo complex  Manifolds with  Complex  atlases {(‘\’1,“’3\ and 1(“"’(,\/“\5. It F-M->N s a
GGndinuoud map, We say F is  holomorpic if Vi,X Yoo F o9 s holomorplic G5 & complex funchion
on “- s d.mniﬂ "h (ui nvy -‘(Vu\) < ¢'\ check Hais s domain.

Monifolds M and N are  biholomorphic (isorvorphic) iF 3 a biholomorpnic map F:M - N.

(in fact, it suffices +wat i€ F 5 a holomorphic bijection, tnen F'ous automatically holomoarphic)
see (ompRx Variable
Noves for dim= \ cose



Propesition : Let ™M e 0 compact Complex wanitold. Then a Nholomorphic  Function §£: M2 € is consront-

pruof:  Conmsider (§]:M > R. This s continuous ciace £ s \ole. Sinte M g (ompact, D M atkainz & paximum,

ot peEM. Consider a chart ¥: W —>AcC" oaround P (wlog map to Some polydisc). Nete Fo®  sariskies

say
Yot consvant (by ex. Sheet 1 @1) , $° by Gjectiviy oF € £ ig ConStami on U.

the  wox. ywodulus principle on U.  Hence

M i covered by Ffinitely moany charls  (as compact ), So repeat above P each chark. So F is  Constant on M.

Examples of Complex mManifolds

v. Teivially any open  subset of C°
4. 1-dim- compiex manifld is a Riemann surface
classificarion is Kknown OS twe uniformilisation  +heorem -
oot C/ winsle "
Riemam sphere  Cp* 2 S |, C, L EC ,

biheole

elipiic cunves C/A (T 6'xs") where A = AL4NL , C‘Ia,_e ®R)

and AI\' , A=I\xlay el ong T Suboyoup oF Mgbius tvansformatrions of A properly discominuousty

More  generally, +he Quotient construction of Cemplex manifolds  ( sheet 1, @2)

2. CP" Coc ®™)  complex pmjective spaces
¢ty w c™\1e — cp"

* % 1 -dim subspaces in
+n) (" ( ANtoy -+ M) V¥ 'XQC\'I'S))

Notavion :  poiats a CP"™  Qre wri ten L o .-
With  quotient topology:  HOusderff, Second Counable,  compact.

Coord Charts: wi= 10ritan) ) 240 R iz 0,...,n

£ X A N
@i (Cae:..tan)) = Ry seees Ve ;.')€¢"
. “w oW wi -t L witn Wyt Wia .‘,2.)
oand > (j'n) QJO €, \ -(;’ PRYS 7, ) Tj’"" “'_j ] -w—}l g oleck .

Twis is @ veny important  manifold:
(1) Compocr complex manitolds never embed (hole) in €™ , bwt Some can embed in CP".

These are calied projective  manifolds.

1 MO C" 0 holomerphic embedding. Then N K 1,1,

proat of (1) = if M s a Compact complex manibeld  with
*M = € s holomoerphic on

wiite Ok : €" = ¢ ;T P % the (oord projecrion (which is heto). Sy Mken

O (ompatk complex maniteid. Then  Trel is constamt ¥ K . Hence D (M) s one point Q. I:’

Easy example: wmaking S? into a  Complex 1 -dim. wnanifeld CP'. Note %=X % sy +x%:1} CR®. Define

£ (yr) € s — [‘:’f: -.\] 3

e cpt
[‘ : ’%: WAt
Check £:S* CP' is a diffeomo rphiswm .
(°1°)t‘)-

The induced charts on S are stereographic  prmjections  fur



n
3. Complex Tori - ¢/A. wheee A ¥ 7" lattice, Q discrete subgroup of c".

Endow with  quotiem topology:  Hausdwff, second countabie and compact:

Charts: local jnversey o the  Quotient map

wm: reCt — +A €¢7A

(L

Di ¢ € o sufficientty small gen ball st Wi W 2 Di can be  inverwed.
any Lransidon  funcrien @ew'() = 2 +2y(1) , 2 N CC€ " A 3 2 constant.
cont g::m.cl-:d
Y. Hopf surface: H® = Cz\i“'"”/( \ i 0 complex manifold according o Example Sheet 4
z2 va2y
queskion 2. -
As a real Y-manifold, it is difteo morphic 4o s*xs' . one can show (later) #hat H? is not projective-

We can also generalixe +his to higher  dimensioas. We Can  define H" fr each neN 05 in  the

example  sheef- H' i biholomerphic 40 qn elliplic  curve (1 dim- Compex docus).

5. Complex Grasmannians: start  with N an  n- dimensional complex  \eCtor space.  Then
Grg(v) = ? Kh-dim complex -linear subspaces W Q-V\ , k<en

t9. Kel, then Nz €™, then  Gre(V) = CP".

How is this a valid manifdd? W can be gwen by some kxn complex Mmatrix  with Tankg =K (choice of basis).

We may diagonalise @ nen-Singwar  kxk part to obrain  K(a-k) ‘' free parameters”.

Remark: ' Grg (V) is compact, K(n-K) -dimensional  complex manifold.  Morgover, i} is

also  projective
( Q6 , Sheet 1)

my¥ . . . 1) .
Proot  of (ompactness: (C* “) :=i linear ly independent Kk-tuples in C"} cCc i§ open- Define projection ™map

l-m)* = Gk ( d:l\)

n: (€
n R ( “"‘Y'
Which induces the Quoiient topology  on GwnCC), making ' con¥inuous.  Denote C')u % mean the

- \ K,
ockhonormal K -tuples  (wet  Hermivian  janer pwduch).  Then (€ 0 M LLEP Closed ond bounded. Hence

@™ s Gompack-  Siace Gre.CE")  is  the image o o
9

also  continuous-

compact sed wunder a (0NYinuous map, i+ is

6. Complex Lie groups. G -(am)e Gxa = 9h' €a holo morphic-
9. GL(n €) open in  Matn (€) 2 .
se(n,€)  alss a e group-  Proof is Similar {o real analogue.
NB.  soln, @) ot Compact bur  So(n, R)  (ompacs

Non e.g. UCn) is notr a complex manifold



2. Tangent spaces and Holomorphic tangent bundles
Le+ M be a CompleX  n-dim Manifld. Then M is a real 2n -dim manifold: R, peEM, let ) = 3+ iy; be
local  Complex (oords arund P . The ™j, Y) are our veal Coords.

< 355,55, 7
The  (rea)) tangenk space TpM = span ?%j . 3y; 7y

2 2 o -\
Then  set Jp € GLg (TeM) C Ena g CTpM) by ‘E;j — . v ( \ o)
g T T3
lTee Jp'= -1
idendity

) )
Consider 4he Gompleified  tangem space: TeM@C = spang < 5%j . 355 Vjeyenn.

We can  4nink of Jp Qs an endomorphism € End g (TpMBEC) by W'  (omplex  linear exiension. SHI owe

Hhas TP = -1 . Cvew eigenvalue of Jp  Mmust square 4o -|, so  possile € values are 1
Def 1,0 - . - i } .

ine tomplex  Subspaces -[P M = VE TpM®C : Jv = iv holomorphic  +angent space

*
o,\ .
.‘P M = i NVE TpMed : Jov = --v} antiholomo rphic  Fangent space

We have o (omplex Conjugation on ToMBC induced by €@ 2 — €83 WeE TpM and 2€ @
and exiending linearly over ceals. I4's nor (omplex linear but is real linear and inverhible. The map interchanges

0,\ Al
Tp"°M = Te'" M , Tp° M = Tp' M, gince Te has real coefficients.
\,o - . o, .
dimg Tp M= dmgTe M =n (dim (W) = n)

Proposition: (i)

) Jp ond hente * s defined ndependent of Choice of  (oordinates.  Moreover, Jp , PEM

defines a  Smooth seltion of End (TM). call TE cad(T™), T(P):z Tp. vight new just
think of as
variables
_ oz 2 s 3(& ) LA -3)
proot: (i)  Consider a change of basis  2%; ! oF; (eq. 2%; 2(”‘) dj) ' 9% T *laxj 3
0, .
dicect caloutation = 'r':’°M z 3 v- iJv | chpM} Te M 3 ov ity “‘GTPM}
2 )
Spanned by i;'*)}j:\,---.ﬂ spanned by ?ﬁjghl;---:f\
Thus as  a real wvector space,  TpM s isomorphic to oM and Te™'M . So  leosely speaning, Qs ceal

vs.  dimg(TpM) = 2n and d;mu( T M) - dimm("p”M\ 2, 5o dime (Te"'M) = dimg (VM) = n.

V2
(ii) Recan snar real iangent veCrors are equivalent o  derivations (z. M‘) (¢) % 5cc™CM) acring on
C*®CM,R).  So (omplex +angemt vetlors Ore respectively derivations acting an  C*(M, €)  py (ocking ab

e real and imaginay parts.  Thus

derivations  vanishing precisely  0n  holomorphic  functions on M

To:‘

e derivations  vanishing precisely  on antihotomorphic  functions on M

= 4he t i eigenspaces are invariantly defined because +he above  two siatements are invariant of \ocal (oords
TaKing tweir direct sum  gives TY°® 1°' = TMeC. Thus T s invariantly  defined on all TMEC.

( smoothness in P (omes from  the local (oord  exprescion ).



Lemma @ On overlaps of (Complex Coocd. Nhoods with words  (23), (w)), we have

2y 22 2 2.7 %2
dwk i dwg 9%) ond Wk PG 273;
2 2 | L.
Recall ";"N £1 & holo g: We g2 EC€™, 4ne Tacobian Tr () wel.  9xj . Y5 i Similar via
2 L 2 _;2
-RJ-'!( ay 'ayj) Lo I o
o I

Combining with  Yne  lemma:

Pnp: Q.vevy real manifld \M\dvrlging 0 complex Mmanifold 13 oriended.-
5.61

e
proof: Indeed, det Ig (M vo holds V= f(W gnthe overlap ob coord nhoods D

o 1,0

Define P'C-'M Te oM =TT ™M e holomawphic fangem bundle  of M

Rem: ' this is a complex subbundle OF TMOC.

\,0

Section> of 4wis bundle T M 0ct alls a5 derivations on C(M™, C).

Dfn: o  secion g€ T(T"'M) 5 o holoworphic  veCror  Eield  if Vicc(m, Q) ho\omovph‘u
$F§ is alse  Wolomorhic.

Can also define U ™M= T°'M 4 pe ¥he antihole  tangent bundle.
pPEM
Note:' T U CM> € i hoomoghic iF 5F 6 ¥ s5€ (1MW)

Recatl 3€ TCend ™  ( fom prp (i) T is  welt defined)

Remark ' we have a standavd  representation ot G (n,€) an R e an injective  homemorphism
a -b
GL(n, @) 2, GL( 20, R) Each Complex ety G 4ib  pecomes a  2X2 real  mokAY (% a)
ten $(GL(n, €)) = subgroup of GLC N, IR)  Commubing with
(%) °
30:
0 o -t
\ o)

Se VE, we have +hat o change oF (omplex (oods  Giwes that Cauthy - Riemann  for £ 13(7)€¢(G\L(":¢».

Then & holomorphic atlas of M, via J, induces @ reduction of the Shucture group o the vobe TM from
GL(ZR) 4o GUINE) | hence making  TM intv a (omplex v b. (roneg = n).  This happens + be

[semorghic 4o 4he  Woloworpwic tangemt bundle  via Vv E TM- (v-iTv) € TVOM.

) 2 i) 2
Locally, #his is  induced by 0 e Y P oy H 2(“* ‘b) e

USing -3 0 place of 3, we gel On isomewphism of V-b- TM M.



Recall : if  £: M SN i smotth  between real maniKolds, then

al®)p = T = T N \inear

We coan constvuct o Complex exiension of kwis by:

df)e * TeMOC D Tepn 6L (comprex  Ninear)

7"’?" Tt & smorw  map between (omplex wmanifolds, £: M =N,

\\) £ s \no\omaphic

G) dp e Tm = T 0df
Gy ae(T™°m) ¢ T'°N .
Gy af CT*'m) € TN

¥hen  4he following are equivalent.

2 2 2 2
prot: Gl statements are local 2 wlog wemay (omder f: W C " > €™ . (We real bans {31. '3y, 100 DA’ Dga
2 2 2 ope
on €" C= ‘R“), and {N.’ ?vu"': 2um / av.ns or € (- \1’:"“)-

() £ 45 wolomorpmc & COuchy- Riemann eans on U woid

a-b
heed 4o g over prab- e (d‘nP xpressed as  Jgr(f)p consisting ok plocks o  the form ( ) l) , abeER.
o K al ?,nbriel( are, 0 .
i = s k=) s W . .
Now T'p is spanned over € by X3 : excepk @.v.)"‘u_', TpV n dimensional
ag -ibe 20-1 . .
Then T (¢) e = be -iog J 28 whith 15 again  a vector ot ype Lo o (i)

Lzt M

If £ ) lolo, then +he Cauchy Riemonn eguations  hoeld-

We saw in +he previous seCtion +hat  dhe
Jawbian  T(F), is then similar ¢t TR(F). Buw is

complex

Gomplex Jatcbian is exadly (df)p. I mean , the complex

Jacebian s precisely +we ex pression of (dP)P as a  wmatrix when (o nsidering (@f)p 0ting en 4he tangent space

]
T (o 1% T, whichever you tike) which is of
\,0

that T =

Ourse a  vectos space.  Remember  from  direct  calwiation
Po-in lveteM } , whith is n dimensonal . The relation for Rawsia T’ p it equivalently
TpV ziv: The Rk given above are  clearly linearly independent,
Obviously  twey form a basis . The (ast  lne s

satsty  twis wile, and twere are n of them, So
s"ﬂaigm forward.

() & () dF 35 javavian
real

(|I|) and (IV) 5l (‘\) (AF) preserves e (1,0) and (o)

" 0 1,0 “o
under Complex  Conjugation, and  (conj) Maps TM =2 T''M, T1'°N - TN

-Subspaces:  But  Tm, TN QU on 4hese by (Ei) id.

df T (TVOM) = dECRTTM) = a1 s N e e
]-N dc( .ll;oN) - Tn dc("\'hoN) € 3. (_lhDN) - ;T"°N ') ame .

Cae-r,2e-1 cn.l,u o -\ . .-
() =2 () each (2x2) bk By, ’( e € ne o W)y commutes with \ o) by assuming (ii)

a -b
> Bgeg °* ( b G) for  some a,b €R

& Cauchy Riemamn  hola

o 0. |:|



3. Complexified Cotangent space

TP"N e C maps Tp,M&EC - C. *ZT,',"M’ci"“'“@C'-M“'}
T M Fve oMo gy z -iv)
i -dy)
the ldua &) 3 octs 47 -t Vel
dyj & o)
. 2 i, -
Wwe have d‘p s dx e ld‘,‘ 5 nore da; (3'_)) T SJ and ﬁm‘l\ﬂlly for dx.
d3 ¢ = dae -idyx
Then dxr  Oenerates Hae () eigenspace, oand dxe ‘e -i eigenspace missing a line here
wo )Y . i * R _ - }
(TpM) = € e T*MRC 2 T =7
AR MR A - P TR TR A = -ip)
{ 2 ] 1,0
Rem: p Spans T M, oand since the  holo (ctangent space 1S ¥he dual of the holo tangent space,
*
We immedialely gob & basis  dw (UM = (3l by pue abwe  obiervation The ldea of spanning
the (i) and (- eigenspaces  follows from  this  dualisation.

* uo 0,1
Recall  subbundles (1 M) . (T’M) on & complex manifed M indluced by 3J.
we Can  define

N (*mec) = & A (*uec)
P+q=r

wheee A" (1*mec) = A(TTM)YC A NP(TEM)Y

This & just +he standard ( complexified) wedge produc-

— .
Under (omplex (onjugation we have that I N Na,p-
The sechions are N°P(M) : cupplex  differential  focms obtype (pg)- In  lowal cwrdinates,

Z Q'I,]' d;;lh... Ad&ip Ad’-&jl t\...t\cﬁh
I,3 —_—
a3 ¢ d35
. I 24 B .
The induced dclion of J 5 TP = Y P <P Ca.'q' ( we've jusk dropping 4we dual T potation for T)
- .= el g . Nl 0w
Notice that T d‘i ldQJ and Td%j T - d‘\j s\ ! d‘%j Siace (—l) v o= (|) s (|) !
P
Noke  ywak att(ma M - ﬂvm (M) reat  Cpp) -forms ( ie iovariant under
veal forms
L1

complex  conjugation)
o -
Kn = A (T*M@C), wnere n- dimgM °

* .o .
AN (T*M) , 'S called iwe conomicdl line bundie



Recal on o  real wanifold we Wave @on exievor derivative:
o \ - Lo o,l
d: (M = a'tm) = a’’(m) & n'(M)

So  wiite d= 943 | ynere 9= mM"Ped | 3= 0d wheee TPV ¥ (M) - a"Y(m) prajection

4

along  otwer  (omponents of @,

Locally, foc 0 c(omplex  Punchion §, of = % agf.g day , 3= % ?’:: d>
Generaly for  x e " (M) ( pure tuge , only nomtdvial compenent In one  type) , +hen  define
50 '-(n"“'q‘od) o
3z (07 e d)a
Br oea®(M) | Bxzo i jgany % = T Fr(Bdrminonddie gy B holomerphic.  Such @

form o is then (alted a  holomorphic  p-form. Holomorphic | - forms  are  some¥imesS called Volowmorphic differentials

lemma: ©6n a (omplex wanifeld M
Gy w e o (wy, dg = 9n 131 (e above d is defined on £°(M), we're extending 40 higher deg cees)

(-li) =0 = 23 , ond 29 = -2

@) 2(5r) = Tsan + s asn , $en”tm) (simitarty  £oc )

prosf:  the  staiements are Iocal
() easy +v check in tocal  Coords : q(#d%;l\qi,) = (98 + 35) daz ndaxs  and exeend by linearity .

Note  both  sides  defined are independent of choice of Coocds).
) clear fom () and d?:0. 2% dag Nday + 5§ dag ndyy

0 -d(ac dxz Nd23 + 3L d=g Ad%;)

: 9% dag Aday + 938 driAday 4+ 5F duzAadag 4 9 fdazhdry (M

Then +he idea is o compare the terms .- d2x "‘*“!, and notice +hat He ones +har have 2% and 3t
coeftiients have we way o cancel except A when 9 and 3 =0. The #rms 33t darAdrs and

93f day Ad33 have 4iwe fame  Monomials ( His takes a liHle bit of a Check iy ﬂ"*‘ngmew ot wedge)

and 50 foc (¥1 4 vanisw we need 3 = -3.

(iii) wlog ek '[c.n.""'(m be pure type. Take (pep'+r, 94g') and (P+P'. 24q'4))  components of
d($aM). Then extend  complex -linearly +o any N

[ -— -
Sﬂ“ VL: ﬂP'Q(M) ) Vl = ¢ dill\...ldip' A d1|""'\d'\t' < ¢ d=xg Ad=xg

Take §ML' and twen opply &

algan) = d (50 8dag ndsy) ‘
: dga(fdrandiy) «(-)" PV 5 nd(fdrandiy)  (siandard resuw)

7 result follows tonsidering  ® and 3.




Cortlany : d(ar*m) = af"tme a

PN (e W)

Plso (i'li\ and (i) Continue 4o hold wihhout  4he  pure hype Ossumption by  (smplex - linearity.

I+ s Sometimes Convenient to  C(equivalently) repace 2.9 by d oand

d= 3+3, and d¢=i(5-9).

Both ack on  real differential forms. So 9: -",:(d'*idc) , ond 3 = ‘:(d-id‘),

dd®: -d%d = 2i93

Atss (49 S=0

) and

€ c
Recatt pull - back of differentiat  forms by a smooth map f: M N s £V a'Ny = ') by

<t XY = o, @YY Y vecker Sields X

t Fss holomorphic and o e n'° (™) Cresp- -Q-w(M]) (i-e. Tot = iat) , hen

<3 s%, X %, TXS ® is (omplex linear 7
* La, [@F) XY dto3 = Jodf from our previous lemma
= L, T@E) XD
= {3ax , @)%>
= Cies @) XS

:<i¥‘*°‘;)‘$ VX

Thus **aQ.Q""(M) ,nd  Similar foc n7(M). Further, since £Y(3aW) = §'% '\‘F"Vl;

Proposition: Hae pulback by a  holo wap  preserves tve iype de compotition.

Further, f'od = dof b osmovn §, iF P 35 nolomophic, tmen VM e.n.""CM),

('5 oF‘) Vl = (“9-‘1‘" od ot“) VI = “?'q'“ ° Q“ ed‘\ = F" 'S “-PA'*‘ o dVl H #* o 3“
t

15 mote (from  proposition  preserves type)

We obtain e KW\owing  proposition

Propo sition : S0t : (Y03 and Similarly et = Y2 whenever £ 1

o lomo rphic -

’ - d ALK A
Definition : Dol beaut  Cohomology Y (m = iKtr 5.2 m - (M\S

Tm3: at*'my — a”rtm)

CormMlary: W& £: M= N s holomerphic, +hen £t H"" (N) > Hv'q'(M) 1S a

Moeover, i § s biholomorphic,  +hen B Wy S WMy s

Q - [
Remarks @ b 4me in general  tha 8, WY m) T HarT (M)

® u® (M) are not wpologi@l  invariants.

well -defined ,

an 15 marphism.

blloz [0\

complex -linear

(narurality)

magp:



notation: for

s € R" or
Such  that

= Fls.

c'\

9 -Poincaré lemwma in 0ne variable

let = T aee: la-aler }, 9¢ c*(5), where D i he Closed disc. TReA e can define & syooth funchidn
| 9(w) - i f
()= — Z_ dwhdw € C*(b) tiséyi — =9 oa 0.
d ni fD w- Saristying A
To preve +his, we need a  lemma known a3 the (exiended  Cauthy Integral formula:
1t rec*ilx-alér)  and 2€C 54 \x-aler,  then
\ F(w) Y °F dw A d&
F(z): 'Erif o dw oy Y > (w) e
\w-Ql=¢ \w-aler
b F(w
proct :  Shohes theorem o 1 -Form W= ami wem dw on pg = i\‘“‘““' } \ g \W"*-'\<t}
a%
Rem: f we assuwme F is holo, then dw 0 and second term vyanishes (ge& original Cauchy Iniegral farmula)
| 9F dwadw
Then dn mi W w-3 Catculare  twen +hat
5‘,{ dn = f - f " (srokes Wl boundaw)
(w-al sy |\N"\ =t
. i _
Now oot e - S° F(a+ce®)gp — F(2) as glo (+ends 4 O fom above)

(s just flows by using o change of coordinates

Pole order | s

and f-

R, £ €C®( means I open U>S ,  smooth

. 18
w6, w=ztze"

Dg 20D as €0
integrable oF d'*"‘da\ = | 3F 1dx Ady | 23F 4endo Jusrification twat
W w-a @ r o oW LHS makes sense.
rzatay? e -
Whith is integmble
(dm Adw = -2idandy = -zirdrAdD]
Can take € =20 ia
wr xtiy,  (r,8) polar fom (Y. 2-dimensivnal invegral.
Pubing twis all  togetwer (as €0),
1 ¥ dwadw l___E(_w)
J‘ wmi 2F L-a [ wgsy dw - F(2)
D \w-al=r
1 Elw) 1 T dw Adw
= F(2) =emi ey dw 2w 5% w-v , a5 required.
(w-a|=y (w-aler

(c™) Fu->Rr



Proof of 1 -dim Poincare

lee % €D , and Chosse Do :zllE-2lc¢we} co (5, cp)

s = 0
9(%) 9.(2) + 51(4) both  smooth 5.t 91|i\a--\o\>,1ﬂ ) and gllﬂ\\i_u\sﬂ
$or = near 2o
g;(W\ -
Let f£,(=) - zl_; ‘YD e dw Adw . The  function  we're integrating 1S Smooth and  bounded, so iategral
5 well defined - 1ot an  imprper integral.

w-3
—_—

Lunction voaniswes

Then ‘ah(_ﬂ . L y 1_( ;lw\) dw n B funckion is Smooth and bounded, and on a bounded domaia.
p o

So just meed 1 cConsider g, fw +he proposed definition of {.

9, |has Compatt  support, So

(w) - \ 9\‘”‘ -
Lo A QW . L =Ly
oy e ow Sp wor dwhde = [ ooy dweaw exiend by o
42) -
\
c
ie
e | 22 e®) e
n C e\&

= well defined and Smooth a R .

Consider then
24 _ A ’39-( B) i 1 cL] -
-_ = - == (3 *+re e dr AdS = — c— dw A aw
PEY w JC °3 2ni Jdo 9w (w) —“:‘_%
back to W
variable
From  emma,
N 9(v) dw L 99, dwhdw
9|(%)’ A S -% * m .r ﬁ wW-r
\w-ai=y 0 lw-alcr

I vonishel on this Contour

So in sum we have

95 (20) = g (2¢) ?¢ - ¢
) o) = = g(ﬂ..)l and (xe) = O . 0 o -
'—.;! ' 3_; ‘D—i (=) )—_:, 2 6 hear %o



(General dimensional) 3 - Poincaré Lemma
Led D= i \}l-ﬂ.\ﬂ"}\: i\im -aml| <Ymk c ¢M . P°‘5d‘“l with poSSibls some Ty =00
Then HY¥(D): 0 fo LA

ne —
Prvu!: e} Qe n (o) we Closed, 2% =0  \withaut \oss of generally, p=0 G5 e can alway write

Q= WAdI; . and 3@ : IN A ARy, which vanishes & 3 =0 . 5o if we con prove it
(0,3) (pi0) .
for p=o i+ extends  mmediately fo all p.

o & ¢en”to.

. 9, Q-1 —
Claim: 3 @ € 0" 7" (Do) st W= onbs, Where Do is a smaller polydist with rodii €u Ste, Fzi...a.

Proceed by  "integrating " dRa, then d¥pa, .
Suppese  +hat only dF, , ..., 93, occur in ®. Then we can  write Q= die M0, + W for seme  unique
Q,,% that do nov (entain dRk. Since P15 D-Closed, = for R = SI- R1d* 1 ¢ Tu-u k), we have
2%
2 =o  yevk
2%y

dw A dwy
[ w2222
wy -tk

Set Mg -

\wx -0l € €
C
:ll = @y by Cauchy Integral formua.
0%

But ?

=
*

0 V (Q?K\ as ?i\ o
%

LY
L4l
»

=) - 3(ZTw, di:) = @, witw ne A3 0Cluring.

Repeating in each variable, we dbtain Y.

(»)
NB* we needed to reduce D 4o Do . To now Solve +he 9  equakion on all of D, tawe € Trea nae

-1 - [ ]
N kK=Ve,m.  Then i\l’nGﬂ.M(D) sk dWa 2 P on Dn polydisc  with f:“\ (“&l.Dn = D).

claim: Ya  will Converge @ na e
pl: Induct 00 q : assume due  for 0, (2 -1)-Form Q, where Q%2. Then I« such +hat

24 =% o Day = 3(st-Wa) =0 44 ©n by inductive assumption

0,0-2 = - _ -
) 3[& cn (D) such vt OF = Wna-% on Dn-t. Set Yot = o + Op. Then D Waui® 3o =¥ on Dan,
ond  Yan ‘o,_. : Walpgna. So Heis  Sequence WaY s Gonvergent o a Wwell defined Y a3 n>®, and

JY = ¥ on °.



For our induciion ® remains +o show D - Poincard  Sor  (0,1) forms  (a=1): T.e. Given ¥ Y e .Qo"(b) with 2%:0
any VY open polydisc Do with Do € D, 3 W, €C(D) wim 2W.=9 on Do. Then in fact 3 We € CZ(D)
with W, =9 on D,

As be fore , +ake Same sequence On of Po\gditu .3 Ya € C’(D) s-t sw'\ = ¥ onbdn , ond j we c*C D)
such  that Jo =@ on Dptr. Then Wa-% is a holomocphic Punckion on Dn  Siaee v saviskies +he CR  eoguations.
Thus it 15 represented by a power series oa Da  Converging  uniformly on  Dn-t (on any  Lompact suoset). Henee 3

parkial  sum (a Wholo polynomial) 3 Such +hat

Sup ‘(Vn‘“)' Pl < ZL“

Dont

St Waur = 4P D P Way oz (a+p) - da = @ o0n  Dnny
P hole

Sup A Lol
Morcover ,  “Ynti “Wa i wele sa Da Wit = | Whe -Wn) € 2n 5o we  obtain o sequence ( Wadaso in

c*(0) with  gnifrm  convergence Yn o W (n2c) on  (ompatt Subses of D Therefsre (For all  Fixed n)

lin (wl'wn) 13 \olomorpwic on  Dn-t
Y

Luniform  \imit o wole  fFunchions) . ond IV @ on D (because ils bwe Vn). I:’

What about the cemaining groups ?
(L] N
Rem: W Ce") - i space of all  holomorphic p -forms \ 15 infinive  dim

\-\°'°(M) T C $or any (ompact  Complex monifld M Ssince Hhis is the Space of o lomo rphic functions on ™M, Ond any

holomorphic  function on Q c(ompact manifold is  Const ant-

( snan tater see dim HY (M) €00 B (ompot M if KiiMer)

Almost Complex Manifolds

Definition : @& smooth real ywanifold M is called an almo  Compex wanifold if 3 TCT(End TM) with 3= -I.

Such a 3 i called an almost  (omplex Stucture on M.

lemma: (From Linear algebra). Let 3 € End( R") ,3=%. Then ©0) TJeGLIM.R), oand ) m:=2n, ond
3) { AE GL(mr) = AIA=TY ¥ aL(n, C).

Take (s) e G 1'\"“)/ — sT,5" =] Te end (RY ; 3%:-\]
G\L("n C)

o -\
Where To * block diog mamx with blecks ( \ °)

SKetch - proof of  Lemma:

N\ v 4o, V and Jv are \inearly independent. Can get a basis  from ihem of the  Form

€1, Je,, 82, T¢, .., en,7en , an even number- Then T= T, in  +his basis.



ComVany:  Gn  almosr  complex stmcture o equivalent 4o 4 GL(n, €) - Stucture on M. Thus €vey almost  Complex
manifeld i even dimensisnal and has a  Canonical orientation -~
3 Jmpli Y-
mean J
<
we con exwend €, Te\,..., €n, Jen to a local frame field oaround peM.  Let e, 1e.*,...,en",‘le.\' tne
dual  ofmme FeWd . Then  Z = JetAeY Ao A Tea'ned
1) - -
69 it M s a (x- manifo\d with  \ocal  coords (s)), en £ = %‘ d‘%\Ad‘t.A...Adngdtn
ot in ceal 2 dauiAdy, A... ANdxXnA dyn
realt T(dx) . -dy )
T(dv’) L3 -dx
A
J*.
Remack @ (-3) is another almost tomplex Stmcruce , Qgiving the  same  grtnarion i nis euen ((dimg M= 2n)
opp- orientarion  if nis euen
Definition~ The +ocsion of an almost (omplex  shuckure 3 s q  enser Ny € T(Hom(A’TM.T'*))
Ny (%) = 2( Cix, 3v) - DY) - 30y 7Y) - 303%,Y)) € XM , X,Ne%Mm)
ac+sS on rea\
veCoe fields
If Ny <0, then I s caned ‘torsin -fcee Or  integrable.
Fact: Ny is C*® (M) - \inear (is on algebraic map) (diced caleuwtion wusing [FX, 4] = £C0¥Y) -(w)x)
So  coefficients of N3y depend on T + 1% decvoive
2
0y| 02| 2022

Remark: N3 is andisymmetic  Ny(x,¥)= - Ny (Y,X)

and  NCEX,Y) = ENCXN) W Ee Coo(M)

. . . k . =

in local coordinates : Ny (9i,9) = {. N 9k, where it 3u;, Twil real tocal coordinates.

Newlander - Nirenberq Theorem:

MM Qimost Complex Stmcture T on M arises from an atlas of local complex coords ifF N3y 30 (3 is torsion - free),

Remarks on  the proof:

G [T . l )— _3_ 32-

s easy et g * Xa*tiYa be local complex coordinates. Then  consider e 1 ¥a , Jora Gnd T 3gy

have  Constant  coefficients, and in paricutar  their  Lie  bracket C-/-)  vaniswes. Henee Nj 20 , as required.

L " . - :

S is difficud: can ve reod in kobayashi and Nomiu , but quite involved, Ffor smooth, real analytic manifods.
1,0 ’ = .

An almost Complex Stuckuce T subkices  foc  defining T°M, 1"'M and Af "(T'M)c. Hence 2, 2 on o'

alSe  wake Sense on any almost complex manifold-



However, +heve is a difference bverween qlmost  complex manifolds ond  complex manifold:

Proposition: i M is an almost complex maniold, ihen
09 P-':!“(M) P, Q) par, Q P2, Q-
d(a’¥m) c ® n (M) @& (N & 0 (M)
% " .
P"*' Obyiously, d.ﬂ.o'l c a +-fl" *.ﬂ’o (*)
d.ﬂ."' e .ﬂ.o't "'.Q.‘” _‘nz,e
. N ¢ ) 13) ve o
an  orbitrany  (P/2) -form  can be Written as Z €, AN Epyq where each €, € A’ o L - e can
[}
(" .

opply +he product @l qnd

M on aimost (omplex manifold,  the fllowing are equivalent:

Theorem ' TFor
L3, W) € T(T" ")

® 2,w € [(T""(M)). Then
M Tywe TCT' M) . qnen L, W) € TCT (M)

(c){d(n""(n\\ c a"'m @ ¥ (m)
aa™m) c a”m e ')

(d) d( ﬂplq(M“ c ﬂp*"%(M\ ® .n.P'q'“(M)

N3 20 (315 integeabr)

Q)
?moF:

(@ <=5 () gpply  comprx  conjugatidn i Siace  Lie bracker iS5 a veal operator, it (ommutes with  Complex  conjugution.
Tha s, (3wl = (3,W) | o 2€1% & T e

@ o Lb) 2 (o) ey @ be Gny 1-form. Then

Q)

.‘.| s0

w

2
, Yhen w(3) = w(W) = w((,W)) = 0. Mence RWS of 1 vanishes.
w has n ' Components.  So (€}  wolds.

do (W) = 2w (W) - Wel?d) - w(lz,W))

It wen" (M, and 2.WE T

Hence dw =0 on T°', which says precisely  +hat

Similarly  £or  +he other  case (can also use Complex  conjugation)

w€ "' Then b Kon i
Y Assumphon, duw i3 spanned by

use (1) . Suppose T,W € 1\'°, ond
K now

« a3 @
So WHS of () 20  (on T°). we alse

(b)) ~forms, no (2,0) -form  component-
\ "o
T Componemt.  So ()W) €T .

(0,2) and
2 m([?-,W'l] =0 .  Bw +4hen ()W) cannot  have any

wlw) = wl?) = o,
Similarly  (¢) = (b).

(&) = (d): same calcuiation  Aas in  Proposition , i-e. pmduct vule

2 d( €A... I\g'.;q_) H Z g€, N-.. l\('l)‘d T h... '\EP‘,Q’ Come bac¥ jo  4WiS.
K

(suffices +o work (ocuu-ﬁ

W = @ : @ s o speciat case of (d ( tivia))



(a) &€ : a general  (1,0) - vector Fied s X = iTX fou some real , Vedor  field  X. usm:,_(:“"

T :=Cx-i3%, Vv =-i3Y) ., By linearity, expand: 2 = - C3x,3¥] + t\«,T_‘j] + i73[0x,T31] 4337 (3¥%,V)
Ppplying 3 4o both gides  dnd  WMultiplying by i, direc catcwiovion snows 2( % *3T2) = - Ny (x.¥) -1 T Ng(xY)

Naw  LHS =o iff T s of aype <h°\, ond RWS =0 ¢ veal oand imOginay paras ore botw © (Since X ond N are

ceal wvechr fields) . Hence RHS =0 i#§ N3 zo.
Can  then rvead off (a) & (€) , competing e prof- I:’
Remarks :

* existence of T s a 4opological quesiion (Obour 4he endoworphism bundle) . This question i3 \Argely  understood.

‘ integrabiliy oF T = nonlinear P-D.E. ( more diffiwak question) .
easy special coase: reai surfaces ( dimp M:2) By dimension reasons, wno (%2 - forms, D T iS always inegrable.

(using stavemens ()).

Submanifolds and Subvarieties

recall: N<C¥X is a (embedded) (C*) submanifold of o manifold X means twe inclusion L Y =2X is smooth

with  (qtly = Tg¥ 3 14X injective Vy €Y | and L S a homeo onte its image.

Then  (and  oaly +hen) locally Y arwund se‘l IS +he Inverse image (\evel se+) of & regular value.

Definivion: let X be a Complex  n-manifeld, Y CX o  smooth  supmoanifeld of even dimension dim g¥ = 2k .

nen  we say Yis a R -dim.  Complex submanifold iff Yy yeV

1 (omplex coordinate ot Ry Uy Cx > €0, ye Uy such anar @y (WgnY) = @y(wHaC® | wiere

€* @™ = T 2 eC": AT Ape zo.. = 2020}

Remarks:
°* Thus Y is a Complex k -dimensional pgpifold  Wivh holo. atias i (us‘“ . ] )},eq

Codim o g = dim e X - dimeY = n-k 7’(‘.)
. . a-k oF; -
¥ is equivarent 202 VYYEY, J hoto F: Wy CX - € such +hat g (‘ S n-K on Wy, Ond
open C\ow; ’

yewy
coords  (wi)

F7'(0) = YO Wy  (Inverse mapping +hm in  (omplex variable)
inclugion Map (omMMUEel with atkien of J

<)
® Then L: Yo X 15 a  holomorghic map - Equivaiently, TyYCTyx is a Compex veckor subspace.
So S T';'o“ c 1‘;° X (bg previous theorem). e :' <e-iJe>
:\,v -?,"‘1
® Reaw : & X= CP™ gpa Y Compact, +hen Yis & prjective maniford.

Definivion: Y €¥X 15 caned an analytic Subvariety i Y CX is o closed subset and YV pe€Y 3 nbheed up CX

such mat upNX = £7(0)  for seme  hote  £: Up o €™



P is O smosth point of ¥ if 3 such F with rank g J(F), = Mmoo, e W s sunective . oamerwis® p is  caned Q
Singular point.

Define = Singuiar  lotus = = \S = i OW  the Singular  poinds i Ny, 3f NP = B, +hen we say Y is Smooth / nonsingulor.

.2 y\\VS .
By implicit Function +heorem, every (onnecied  (ompenent OoF N * is a  Complex manifold

N is said 40 be ireducible iF Y F Vi VY2 for dwe  proper  Subvarieties V22 #Y. Wwe can show  (sweer 2),

»
\ irceducibrie = ‘i* is Connected. Suppose ¥ 1§ irceducible. Then codim Y/x = codim Y/x
fack: NS is idset a Subvariety, Ond codam\l’/x v codim V/x . we can Ccheck  weaker statements:
*
* YT ¥¢  ond is dense openia Y

* Y5 > contained in a subvariety oF X . This Subvariery does nod contain V.

I codimg V/x =1, 4hen we wil call ¥ a hypersurface.



2. Holomorphic Gieometry

2.1 Holomoarphic  Vettor bundles

let X be a complex manifud.

Definition: @ holomorphic  vetter bundle of

(tomplex\ rane K over a base X is o complex manield € , ihe total space,
With o holomorphic  Submersion T:€ =»x (du

the Fbre 1'(x) is a
biholomophic P u

is surjective) oM X suclh  thar ¥ x6X,
K - dimensional Complex VeGos gpace , Ond

Vyex, 3 nbhood W ooty

local #riviakisation  s-t-  the following diagmm

and a

called a
ommutes:

holomorphic

. du
(W — uxc*

Tr‘l P
W

—_— L u

we Qlso  ask twat

¢“|h=“-'(-..) P Ex = €% s o (omplex linear isomorphism for an % €U
1t

Ua, Up Qare overlapping  trivialising nbhoods .  Pu . O

holomorphic local  Erivialisations, then

¢P.¢d-l(‘lv) = (~, ‘I’Pa(’l\‘l)

for  come Wap

UeNup = GL (K, C)
feclions of E :

holomorphic . J4 also  wakes
s : WeXx =€

sense 4o speak of

holemorpnic  local (/giobal)
holomorphic and st Mmos = idy.
Properties: exterior power
(sweet 2) if E and € are +ws holomocpWic  v.b, +hen ESE , ¥ X3 ) A€ ) End(€) ave all complex. v.bs.
L[}
E@e* , €
det€ = AN"FE
Remark : <i Ua, Wpa o, pe»\}

determines twe Wolo. V. b.
3 piholo F:E 2 ¢

E up 4o omorphism , i-.  Jwo hole  \.b
~
Eand € ave isomorphic W such  that

¥ ~
E — ¢t
“E\ ‘/NE
X

Y 0 Commutative diagam, Ond F|;‘ i5s a @ -linear isoworphism.

Fix notation: X Complex manifold, €  |olo. v-b. over X.

The  pullback of €  via  holomaphic map F:Y @ X s a vector bundle §YE over ¥ 35 +har I F hotomorehic
map  with (ommutative dwagram



The wmap F i given in  eath holo.  triviali sation over WCX say by

(b,v) € #7'(u) x¢c* —  (fr®),v) euxct

The  dransition  functions o 4'E are \de o for auw  tronsition  functions \I'r,q ot E. These are  hoto

Sinee ‘Pp« , % o how 4  they sanisfy dhe  cooycle  Conditions. Thus  £TE is @ well -defined holo  v-b.

Ex amples :
T
“yo [ \, o0 . .
1) T"°x , (T*x) , A (7*x) , Kx are  holo wb. , transition Punctions are  compositions of Complex
Jacobians  for local  coneds With  hoe functions (in fact aigebraic).
2) YCX Complex submanifeld, +hen inclusion LY X is  hole, and YESY  {s a hol vettor bundle - +he

restriction  Ely

Shall  mostly  Contider  hotomorphic  line  bundies ( rankg ®1).

Proposition / Detinition - holomorphic  line bundies over X form an oabelian  group. The operakion is @ , Qnd thwe

Qroup is caled +he  Piccard  group , denoted Pic(X).

proof : het L be @ helo  line bundie with bvansition  functiens -PP.. , Ond [ with qu‘ Then LOC has
the  tamnsition  Rnckions fpa fpe ( pointwise  mub) Commu tativity Sine  they map > GL(LA) = €% The
inverse o L s LY noting T EX, ! tbtmans. fund, ten  £(2): V> W is a (omplex linear mmap-

Consider  +he dual map F(R)T i w'— v* given by F(R)T W, the dual bases. IV ond W have same

dimension,  then this i Q@ (omplex iSomopuism . Take (&‘(4.)‘) v s wt. Rank (FR)T) =0 o $R): &(t)"'
so o ompex line  vbundles (FRITY ™ = (). Then  tmnsiton  funcrions of LY are  exacly
- 1»
‘pa‘ . ldentical element in X x C, the  bivial  preduc b
Cormlowy: i€ F: ¥ 2X  hole, nen £Y: pic(x) = Pi(W) is a Group  homomorphism.

Example: +he  Fautological line bundle  (O(-1) over ERM.  Srort  wim

*
Lo, =, an) € €™ \%0% = (2 ---* ) € CP",
We wani +o exhibit C"\ \%¢S as o line bundle E = (-, minus +he e section. L+  sufkices For
Woching  out  +he {f@nsitvien  funckion. Start Wwuwh  srandard (oord patches
W =7 31@#0‘] CCW"‘ x = 0,:-, N.
Define Wnen
- EYY 2 w >
(Dd'(('-\.-....-.a..-.], w\ = (T‘ W, ey ;:‘") = :;"- (assume wo)

and <
L BL) L e ()

trmnsition  function.

dp (go,..., gn)’([ é.; + 1

+h
[

-l - - - - i
So ¢f" *P (R s (R, Ppal ) w) with WP“(‘\ : rt defined on Uan Up.
Thus (-1 is  wen - defined.




Define (_9(0 L= @(-l)* ) the hyperplane  bundle. Can further  define
O(n) = ()@ --- @ 0ON) = O(n)e (1)

m—

n times
Mso  O(-n) := O(-ne) @ O(-)  g0d  9C0):=  baviat product-
Thus U = pic CCPY) is o homomorphism . In fact, Pic CaP™) : 7.
Divisors
Need 4o bporow some Facts from  Commutative Gloebra.
Local Rings
Consider peX , and define Oy, > = Y hoto Punctions ¥ defined on some open region W% s} , the (ocal ring at p.
we identify $ and § it Flu;nuf : flu“\u;‘ B funcvion £ € (x,p s caled an element. £ s an
\averkible element at p & £ Ho. [ iy on irceducible element ot p & if § = Uv, 4then u or
vV 1y invertile  C(or  both). £ divides g if  Fc ug  for Some element W€ (y,p. Finaly, P and g

are  coprime S VYV yu dividing  both £ and g, U is invertible.
[Weuk\ Nullsiellensatz “ \et £ pe an irceducible Qlement at+ oe€c” ) and et h bhe an eclement vanishing
on  £7'(0) A (domain of h)-  Then & divides .

irreducivie
ket #:0CC" ™ € holo, O€ED, and Wig-to) T0 holo. Then £ divides | in Ogn,o - Thas is,
h= uf, where uwe O, we'll  write £l h in Ogr o b " ¢ divides w".
Basic exampe: n:1,  4hen we have an isolated zem  §(0) = 0. Trreducibiliy D xer is simple (order 1), Assume
h(o) = 0. Then write £(ad: 2803 | flo)F 0. Then W)= 2W(R), hilo) #o, and d»i Therefot we Can

- w(a\

wiite  p() = 2 e £(=)

—

Wolo
We shall aQlse need:
Theorem (. F.D): O¢*,0 s o unique fachrizatioa domain. I.6. V& F0, we have £ = £ fm (M%) weere
each € is icreducible, and unique wup 4 an inveriibie element.
Proposition: Let £,9€ C’Jcn'., . It § and g are Coprime  at 0, +then 3 €20  sSuch +hat §f ond g are Coprime in
Ogr, 2 whenever 121 <€.
These  ore useful for studying hypersucfaces Y CX  (and line bundles)
Recall i p € Y¥ (= smooth totus) iwen 3 ols morphi ¢ F: Up € X = €  such 4nat Y N Up = £ (o)

open nhood of P
ond  (@F), #o.
Tmen 3 local complex (oordinates y,.,2n around  p sk §(R) = 3, (extend and use inverse Function ‘hm)
N hoto g Up > C st s‘qnup 20, +then 9: fu (ie. t\9)
~ consider power Sseries ot p:
g is @ power series in  3,..., Rn.  But ¥he function vanishes whenever 2, T 0. Se any ¥erms in Ppower
series  wint have & %1 facdor-  This con be Shewn by inducting on dimension



Thus  we have an irreducible element F €Oy, st Yg voniswing on Y near p, we have Fklg Such on £
Is unique wp 4o on invertible element. )
Definition: @  subvariety ¥ CX is (locally) irceducibe o+ peY ¢ I  smal lydisc  Qround st VAU is irceducible.
poly P

Suppose  p € V’, and Y i5  irreducibie at P (N is a hgpersurface).

1S

asv. abog" i
Claim: J WpCX open ond £ Wp > € lhole Such 4war  Yaup = £ (o). wav"'\“:,\gss‘
i . f.) =0 C B W @ }
Suppose e claim is fawe. we  Know Nauwe ¢ O tyze 0 FitUe® € woete Then we (an  assume
£, f1 ore  irreducible ot p, So +hey are (oprime Ot p I  (oprime Ot Gny 9 near p by prop, in partialar at gome 9 € vy
since  YF s demse and open in Y. Since @ is  Smooth, £,z fouw and £, : fou tn Ux,q  doc sume
fo € Ox,a irceducible by  Statement @). Twis s & contradiction , Since 4nen f, oand £, are nor coprime ar q.
It Y s net irreducible, 4hen appy Claim  to each (omponent and  aubiply out each of +he functions
We obtain  ine following:
Definition / Proposition: Let YCX e a hypersurface , and peY- Then 3 F € Oxp such that  £lyaye =0 and
this f is unique up o invertible factors = for amy other such g, F19. we cau £ o ocal defining punction
for Y a+ p.
For pEY, dormaly se+ § 4o be any invertible elemem o+ p.
lemma: a  hypersurface Y is irceducible b p < local defining function ar p is irreducible in  Ox,p.
peoof (&) Suppose £ is irreducible , and for Contmdifckion's Sake Y i3 nov ired. at p. If Y Aup = Y, uYz nontdvial, +hen
3 \al defining funcions £  for Y ar p . By Nullsiellensatz, 3 & ( vanishes on YOUp) must wave Fl (0if2).
But { is irreducible, so flFior £ by UFD. Suppose FIF . Then Y, 2Y oc Y2 2V , which contradicts
the facs  that Yj # Voup. 4
) i £ is a local def. Punction for Y, and £- :ufl,:n,"- Coprime, then Yaup = T8 e} 1Fe=o0}) =y, ny, ,
where Yj # YNue I:’
In Qemeral,  Using local defining Punctions Ond UFD, we obrain  \dpeX, I gpen Nhood Up €x st Ynup = Y¥p, 0. Yoom
with each Yp.j irceducible.
If X is compact, Con  pass 4o a finite cover of X by Up'sy and can paich these  Vp,j's and ebtain a
Global de co mp osition
Y: ‘4, \)--~U1N (*)

Where ach  Yj is @  globally irreducible analyHc hypersurface.
Definition = A divisor on a complex manifold X is a locally finite Pormal Sum }D = %q""
Where each Yi s an irceducible  hypersurface in X, and oi €. divisor
locally finive  means Y pex, 3 open nhood Up Such that D meess up in only Finitely many Vi's.



The Set of divisors Div(X) foms a group  under addition .

Let X be compact- Then 3 finite open cCover by Up's , say 1ha} ; and  for any «@ 3 wel- defined holomorphic
locat  definiag  Punchions Fje U > € for Yj  (recall (¥)). Then we can assign 4o any divisee D € Div(x)

G

N a
e data  1(Ue,f0)Y  wmere fu iz W £ ' ue o € caltled +he locally dekining function " for D at p€ Ua.

Y 4

We define D € Div(X) 4o be effecive when Qi%0 VYi. Then £a is holomorphic on Ua.

Definition: & is called a wmeromorphic  Funckion on X £ locally, £ is a quotient of hwo wolomorphic functions .
9i

I X = k') Wi , ui open, men I coprime  helo 9i, hi: Wi & €C with Wi # 0 guen wnar Fly; T W,
and  Gih) = Wi on any intersection Wi nu;.

Basic  example of a weromorphic funcion (in d-’mcﬂ)-

X - C" ) 9(%) = g q-,p,;, then 9(2) is  undefined on {*u""\a =0} , @ codim @ =2 subspace.
Wi2) = %p w(z)

"

(vm\ike dimg =1 case, where meromorphic  Punctions 9nly have poles, Sy =D holo wmaps v cr' Cuiw':).
Llel ¥V CXx be an jreducible onalytic  hypersurface , p€Y, and £ a lotal defining function at p. TIf g is a holo
function arund P 9 o , 9=9%,-.9e irreducibie  factors (3 by UFD), then define
Definition: Ordv,P(J) S mqvf 0EL : 9= £%°h for seme h hwolo at P}
e £%19 in O, .
This  toncept is independent ot £ Ciace £ is  unique Up to invertible factors. and So iS 9
Jsi’\ﬁuldv (oem §

Re call Y : N\YS g connected, open and dense in VY.

Claim: ordy,p (9) s locally consiamt for P e‘l", ond 4hus  independent of p € V%, Hence ordy,p (9) is well - defined
independent of P, and S we can drop p from 4he notarion ond  weite  ody (9),

p Lwl‘.‘“‘ns\
prook : Wlog pzo0 € C" = Cu x C‘:-. , ond assume X is g polydisc armund O, and N = * w=03} Then
ordy,e(9) :a & Q(W,%) = w‘h(w,*\, with ia (9‘:'!,,

dhy _
= bWz whe + W, , where o, b are hoto near 0 and 3 “°, and W (00) 3+ o represented by nomivial power series

hio,2) 2o or smal (3. Re-expand W at (0)2) , st nontdv. power Series.
Hence = wth at (o,2) (F [al is gman. D

I+ s eosy 4o See +har  ordy (9n) = ord y(9) +ordy(h) by WFD and noting £ s irceducible.

- 2
If F 3o is meromorphic, +hen lotally F:=q 9.0 hwolo .

’

DeCinition: ord y(F):z ordy ( 9) - ordy(h)

W dz0dyF >0, then  caned a e order d along Y

it d= odyF<s, smen called a pole order (-d) along §.



The divisor  of a wermorphic  Function F 30 on X iS

(¢)-= )‘_ ordy (F) - Y , (€}
;swit:"

whith 13 well -defined by w-¥.D. Any Swch diviser i3 called a principal divisor.

Remarks:

" . .
* D~ linearly eqquum' 113 D -D' = (¢) for some mermorphic  F-

* The sum W s  finite when X is  (ompact
« (F) %0 (effecrive) #t F is ho lomorphic

* (FG) = (¥ t(&) , ( '(E,") * (F) - (&), agume gto

N-B. it dimgX =1, X (ompact ,i.e. o Riemann suriace , +hen Div(X) =ii "l nel, P €X),

When dim €¥ 71, 4here need not be any divisors on X in general. Bur  divisors always exist

when X s prjective.

Suppose  F: L =X iS a Wolo map of wmanifolds. Assume T and X are compact and connected. Ler De Div(x),

D= FAY | guume (D EYi Vi with aizo. Then FYD €Div(2) s wen defined.

Recall X = g Ue N X o ) Fot'. s hi » € where Fai is a \ocal deFMing funttion for Y.

The "data" of D & 1 ( Ue, ‘F«)S ¢ fa = T.!(?o\i)“ for D

1S meromorphic.
L}
cartier divisor "

Then  F'D  corresponds +o i(?"(“-), Fu”‘)}

L] »
N.® when D =Y is an jrreducible hypersurface in X, the F*D need not be irreducible and  may have wmul tiplicities

-

~
Given D7 Y (uw, fad)  gerine Wpa T F, 0 UsOus 2 C

o Quotient is an inveryble factor and se  Wpa s wole , and

moreover nonxero On o lupg

Clearly Vap YpYWVFa 3\ on UxOup duy , On instance of e cCocycle  Condition.

= determines @ holomorphic line bundle over X, denoved vy vl € Pic(X), calted an associated line bundie %o O,

D € Div(X).

~

Remark : [DJ is  well defined : ambiguity o ° hufa for Bme invertible h  hote (never xem). So

- np -
Wpa * Ypa T, (B IPI® L ¥ [P], gince L nas a never mem hole section » L is ddiviay

Indeed we  define h: X =5 L, nolo never nem Wlug = het W T, hps= Wpakd :Wp »C,

ati =
TF 0= (£), then fu: Flua = W = ,3q’[5¢ 21 faus (D) is  heromerpuically  trivial

1¢ [0) is  wolomoeuically &rivial,  then (D) has 4  nevertem  holo Section 5. Then over Ua, S s

dfn  fe

represented by
S
Sai Us = C\13, with Sp= Wpx Sx  on Uanup, 5o sp T Wep T Fp by dfn of [0).

. _ £p
Consider ‘then that s = sp

s Which pach jogether o give a well defined @Global) mem Punction £ on all of X, and
hence D= ()

~ b
T.¢. D is a principal  diviser  iff  it's asseciated (ine bundle CDJ js trvial Mse, (03 = LO8J i Pic(x) itF 0~D
(Iinmr(a cquivdlent ~ = difference s @  principal  divisw)



- fa for D )
* Consider D+8 has local defining  functions fo fo Foy #0 B

we have  Haus proved :

Hence C[o0+D3:= Tole(d)

Proposition : D€ Div(x) — (pIepic(X) is a group homomorphism . The  Kernel is +he Pprincipal divisers. 8

o F: T 2% is o wolo wap of monifolds and TF'D € Dw(Z) is wel defined, inen F'ID) = Uw*o)

by  considering (pulibacks of) the local defining  functions and how +hey Qive rise o +ransition Punctions.

Recalt~ a section of holo line bundie L X s hoto {f i is expreved by holo Puncrions in e€ach holo. local

rivialisation.

We can similarly define  weromorpuic  sections of L (i.e. loc. expressed a5 a memmerphic  Funckion in each

Wolo  local trivialisarion).
Bosic  properties:

* if Sofoand s are two Wewmorphic sections ok L D ST FSo  for some mem funcrion £

¢ Conversely, it ¢ \$ a mero Section and € Mmero  funttion on X, then 8s is 0 wmew section.

Hence by woosing sed0,  obtain o linear isomorphism F > £5o  between

{ mem seckionr on U, € XY & <{ wem  Sunchions. on Wo)

Sa
* lev s30 o mers section. Sa:= Slua, where Ux isa krivialising  nbhood for L. Then sp* Wap , which is

holo and never 2ero  function
2 N icreducible hypersurfaces YCX , then ordy (S“) = ody (sp) on UxNUp . Hence globally, ordy(s) s

well -defined.

(s) := Z  ordys -\

Therehore  (S) € Div(¥X) is wen defined as red ¥ , Which generaiizes divisors o Mem morphic functions.

« (s)vo0 means S isa holo section

cartier divisor

* D corresponds o I(“«,Fa” y g Wpa Fau by definition of (D). Wwe can +hen infer that 3 04 men
Setion  of D] given by imposing Slue = #«, and S0 (S) = D (seen by reversing above argument). 1n
parciaular, T(s)) = (D) jn  PicCx).

Furthermoce  we  obhain V mem sections S of L, = [(s)). Conversely, given L =X a holo line bundle
) i DEDw(x): CvI=L y oz i Nonzero mer Sections of L\/ ct
2
@p o holo ise morphism) (mulkiplyiag by nenver (onsvant gives same divisor)

The image of map in  Proposition B opepivx = [0l € pic(X) is the Subgroup of  Pic(X) of line bundles admiting

nontrivial yero SeCions.
@ L) = 1 men Puncions oa X - D+(f) %0} U S0} is a vecwr space T ] ws oF a0 Lol secrions of [01Y
Fact:  dim( £(D)) <eo when X is Compact-

Remark: 3 complex manifld X (dimx »2) Wwithour divisors bur Sl with  helo bundles.



The First Chern Class

Let L->X be any smooth Complex line bundle Over C(omplex manitold (assume X is (ompact). Ler da oe a
Covariant derivative ( Corresponding 4o O conmection A). Recat  thar da: T(L) — r(T*x eL)=: a,(L) . More generally,
da Q%) - ﬂ-,"\('J - Locally, da Sk T dSa * AxSx in a trivialisation over WUa CX, with Aa are the

local differensial  forms  expressing A, Aw € O '(ua) (5= Slux).
There s a  tansformation law: Ap = Aa + Wpxdypa on UaOUR £ Wpy smooth. (%

Recall  cCurvaiure dadn S = F(A)s, where F(a) € S'x(End(V) "; a(x)
L rank 1 So End(L) is pyup vy Complex #
So  locally F(R) |y, = dA« (CA,AY=0 in wnis case)
Then dF(A) =0 ( closed is focal (onditfon). Curvature is exact locally ( true by Poincard lemm«), but nol
exact globally necessarily due 4o &) ( need wnor be exact)

Any  Other  (onnection on L is Ata where a€R'(X). So F(A+a) =F(R) + da  Thus [(FA)) e y*(x; C) 3 Hn(X) ® ©

is well defined independent of auxillany choice ot A. I+ depends oaly on L-

We can chosse a Hermitfan inmer product <7 oa 4he Fibres of L. Suppose @  (onneckion A i unltany :

d<s,sz> = < dpsi,SeY + {51, das2? N s.,5: € C(L)

Then in & unitany local Hrivialisation, Aw are Skew - Hermition. & R« is a gscalar (rkL z1) 50 Aa is pure imaginary.

('.nner preduct  locany ;s )
represented by dentity matdix

i F(A) i BOAY

T
Hence Zw i3 Q real Hdum, So == ] € Har(X), denoted ci(L) defines the 1% Chern class of L.

’

Poposition :  Ci(L@T) = (1) +e(l)

in park wiar, Cl(Lv) = -c() (v and * genotes aual)

proof:  Consider  sections ser), Telll), Then s@F is represented  over eoch Lav. nbheod U
(fc bon L andT) by  Sa- S« (localy). Since tmmsitions Ore also mumiplied For  she  tensor  bundle,

.85 € T(LeT) is well -defined.

Lt A, A be comnections respeciively en L, L. We Can define dpog (se5) == (ds+As)@ s + se@(di +As)
- locally -~ ~

( defining  A®A by it's Covarians derivative) dys@s + s@dzs

In a biviatisation, = o (saSa) + (A« + Aa): SoSa

Then  dpei ( daes (5@5)) = (F(A) +F(R)) - (s83)

localy = d(Au*A.-d)- Sol Sat .

Thus  on LBL  we obrain [IT:'(F(A\*E(A))] 1.e. G (LeT) =l +c, ().

v
For the (ast part, note +hat  the brivial  line bundle LOL admits q global trivialisatien, So has a | -fum
representing A defined on all of X . Therefore  F(A) is exatt = dR class is trivial.  Combining his with ine

previous result, we get ¢, (M) = - al(L) I:l



Proposition  ( Chern connection for  special case of line bundles)

Suppose L is a hoto line bundie, with  Wermitian  inner product on Fibres: Them 3! Connection A on L such that

(Y A s unitary
@ in any  holo  trivialisation of L  over say Ux S X Ae € .ﬂ."°(uu).

e: U @ ¢, e(x) =\,
= Ce() , e

Proof:  wlog Ue is also a  coordinate  nbhd .  Consider 0 (otal  lholo section

Where 2 is e (oordinates, € €"- The Wermition product  ha( a) = Ve(a)\?

(we'n drop ne & from hea ,Ug Aa  dor  ease of mnotation) | yyen ony  section over W i3 A€ for AU SC.
()  we require dls|? = <das,sY +<s,dasd
: <@a+ AMe aed + < ae, [@r+arley. (over each w)
= W3d2 + wads + hIA2(A+R)
Mse  have disI® = wadd t wWida + (21 dh by product wile A extecior derivarive.
dh
Hence  we musk have that A+RA = T W is on  ianer pwduck sv poavanishing  Punchivn.
Kl\) requires A (1u,o) ~formm and A a (0,)) —foum.
uyo 9—1‘ - ‘ u
Then  for  both of these, we need A" = § = 3logh o G
For any omer holo  local drivialisatlen over Up say , <A up ou g, '5Wup =0 (holo). Se
dWap > 3 Yap , and 3%{; 0
Then  hp * Wap Wap h ( how nermitian prducy  fom  linear algebra  changes  uUnder Change of basis  max.
BUr  Sinte  these are IX\ watrices (line bundle) , +he order of multiplication  doesnt mauer\
Wpa' Wpa
Thus Ap = 3loghp = gk + 2 ( M)
Ypa' Wpa
-1
A+ Ypa Wi which is (0 Lom Lo leckure |
Corollary 1: The (urvature of the Chera  connection

F(A) =3d1glel*= Ldatugler

where ¢ is any local holo  Section of L  without wems.

note: € ot global , but local. R4S local eypression,  bul patch dogether.
of: Exercise

Exercise:  explain why F(A) is not in generar 7 -exact.

L0EM) = () € W'(X)

CoroMlary 2:

Lrom Corvllary |



Rema

of

Srnookh 10C&S.

rk: in topology, c. Complex v.b. is cefined Qs a class in W (X,T). But HJ;CX) T w'(x;R)
ond X CR  jnduces a  homoemorphiswm
/02
Convention: X Compack,  Connecied  Complex  h-fold.
Consider N CX  analytic hyper surface (2 Y otso compact)
Then ¥ 9 € Q™ (%) win dy =0 (closed)  then consider the linear Puncrional

wn-2
Cele Har (x) - I* Y ewr independent of fepresentative
|
use we sientation on V¥ h’ stoxes',
from complex Stucture.
By the Poincard dualy , 31 Yye D4 (KN st Jyo = J nyne
i.e. Wy = p.0. 0¥], CY) € Wan-2 (X, R), image of  CV) € Han-2 (X%,7)
Then N D€ Div(x) D= TAaYL (pinn i Np = Z 4"y, 2
, i inie) , define ) : 1y; € Ha(X)
Proposition : np = ¢,(Conl).
Corollary : ¢, (CD)) is in  the image of the natural homomorphism HE(X; L) = H'(¥: R) ¥ Wi (X).
proof of proposition : to show ¥Vye -an.z (£)) s.t d@ =o, we have ne following:
in Sx B oA = Zoa J“; * wheee TaiV¥:i =D, and A iS  a connettion on [DJ.
tet A be the Chem Connection 4for some horm
Il on 4ne fivees of (DI,
Wlog  ( lineariyy) take D= ( “one"™ hypersurface) wiog Y not  singular other wise use
N
Let X ’uq‘““ , fa local  defining function ¢  our hypersurface N on Ua. T.e. Y= (), whee
S IS a  mernmorphic sectvion of [pJ = (Y] , and fa = Sa (= slua in loal #rivialisarion).
Sinte  our divisor @ eﬂ-er-ﬁvtl n fact s s a holo section.
Comprememny of

Puv X (£) = i pe X [sp)) > €} , €70 (fubular nhood of Y in X of siae t)
Diagram: Cross- section  qiansverse 4o hypersurface

K=t
w ! 27/




i,
Then Sx FA) Ay = ?tl.":", fx“) (dd‘logls\z)i\q’ (¥)
By  Stoke's +hm exaci A closed = exack, we can  then integrare over boundary
[
) z -7 \im (d€togisi?) a ¢
Pt Yo
Look  ab invegrand: Is|? luun(hx(tl) | fal® hy = P S« ha. go sactin  recording
For  Some he >0  the (ocal expression for Hermitian  norm  on the Fiores of (D] on W
Hence on  Ua A(X\X(D), d logls1z = (3-3) \og($u§¢ha)
= i ( v ke - dlog(fa) + (3-3) \os(hu)) fa howe
Novice +hat  vel (3X(T)) =0 as €0 Mse  he is  bounded away fom O , and Similarly  Yha
1S alSs bounded on ITo( . Hence
lim (d‘ loghu\ AN =0
g0 X (€)nug
exiends 4o whole of X(E).
Since & s a real differentiat  form, we can  wrile
(Stog Fu) ne = [ (Stgta)re
XCE) Nua IX(E)aua
Therefore  taking the limir
Q) \im - ;— (dclog 1s12)a e < lim - Im S(dlog fa)ny
e IxCr) Nua e IME)nua
Choose  Ivcal  (oordinateS on Ue Such +hae fu () = 2, (2 = (3,,.,2n)), (can assume Ua ¥
0 (xord. polydisc in C").
Can then  decompose W= P+«%® , @ is an  of she summands Covawming d, o dXi:  Then
ax
W : - Im lim = A (R)
€0 \’h\'—i .
Ao
= -ilw y Rilo,22,.) i-e.  +he residue.
11=0
Thus, patch  over Wo's and sum up,
O f (a¢ togls1?) Ay = -zmi 5, ¢
x(E)
Le. fx F(Mae = -2ni fy¢



Examp\es :

1) x=5 Compadt  (onnected Riemann gurface ( dimg X = 1)

Then D = ZaiPi e poims PiES , D € Div(s).

N Pes is a generator CP) of He (S.2 ), jndudng g geoup homo norphism
PivS —> T gwen by degree map, ie. degbd = Zai.

Then  Vpes Mp = PPLP] € WI(S,2) ¥ T gemerared by Mp 7 (4, wenis) S 9=

’

1¢ L s a compex line bundle over S, detine degl = <ca(L), Us]> e 7z , (s] € Ho(S.7t)

fundamental  class.

-1

So if L=Lbl  shen deg [P3 = 2m: S’ F(R) = degD by  propasivion.

Remark : as deg: Div(D) =T iy (learly surjeciive, 3 holo  line bundies With wmero seCtions over S
for  each vawe of as W(s,m) ¥ n.

Recall: for L € Pic(S), S a complex monifeld of dim g =l , (ompaci- Then deg(L) s defined as

deg(L) = (e, (s1> en ) wwere [S]= fundamentar cycle

Ccalled 1% chern number in +opology) € Ha(s,m).
-1
Our  Proposition asserts then tvat  3f L = P, ktnen degCt®l) = T §s FA = deg D
(o) € picCs) D € Div(s).
Then  deg: D(S) = 7L is obvicusly a surjective homomorphism. Hence 3 holomorphic  |ine bundles with F O wmero

sections over S i any C(s)  (i.e. any degree).

Now let S= CR' (Riemann sphere) ¥ QU 1o},

*  Nonconstant  holo maps C®' — CP' are precisely the rational functions

*  Euew rudional function  Was the same # renms and # poles jn € L teod (‘°""“"9 with  multiplicities)
Feai®i v IPIQ (linear equiv In Dw(CP)) & Zai z I

Al 2
Consider €\ 1(0,0)) — ¢¢' , the Hopf bundle O(-).  Then the map [2:22) — (v, 3)
fom CR' = €*\Y90)}  induces a mem  section of  O(-). Locally ss= L on W =T #oyceh, and
1
sa(f2:1]) = 72 on U2 = Y 2 to} . Thus 3! pote at o0: and has oder (. Thus divisor I8
p: (cyCo:1], and deg (oC-)) = -1 In general, deg O(R) = K.
Propos;tion : ket L= €' be a holo line bundle, ond assume Ci(L) =0. Then L is holomorphically  teivial.

Comow:  Pic (€®') = 1 O(n): memy ¥ 7L

proof  of proposition:

Ie eV =0, A L is trivial asa Smooth bundie since  F(A) 5 exact and A can be represented by a \-fom

making  Sense Qlobally over CR' , thus ger @ gloval ivialisakion.

Ly in smoit sense

Fx a nonvanishing  Smookk section S of L. Then L= C®'xC. Choose a Hermitian norm on Fibres and et A be e

Chera  Connection.



Then dp = 9a + on

(1,0) (o))
Component component -

Then S is holo iff 9aS =0. We want a global, wnever ero SecCtion s of L \vith a8 = 0.

Consider §= e*:crr' — €, & smooth. Then '5,,: : 35 + A"s = o o F = - A"
A" € a'(ce)

Consider CP' = U,V Uz as befoce , Where we iink of CP' = Cuiey , Ww=€, and Ur- C Lg% Coodinate
2 on U, and % = |ll on Uz,

3 local Sowtion £5: Uj > € with 9F = -A"luj , )L by 3 -Pancaré \emma. Hence 2(6.-F2) =0
on €% . So weire F£,() -Fu() = T " V240 . Then et . g £, + Z cna" on Ur

f 4 n£=--n Cna" on U,
Well defined on CP' glebally, and seives 3f = - A".

]

Remarks : * in foct PicCer™) = TOKY Y T Voo

* in pariwtar, U0 has oo Section S with () : He for G wyperplane Me=1 Team: xo=0fy e

-~

Tdentity H2CCPY, 1) = L, twen  Qy( (K)) = K via 4his isomorphism.

« (cx3,49 compute Pic 4o E = €/n , Pic(E) ¥ L @E (& as additive group)
In  general it's not true +hat o  fopologicatly Vil line pundle i3 ase & holomorphically  tdvial
line bundle, ewven t{a dimg=L.

\,®
(0]
Definition:  consider a non vingular , smookh , analgtic  hypersurface YCX. The nomal bundie Ny = —_‘\.0\’ the
\,

quotiens bundle.  The Ffbre of ¥nis bundle s TR /1 usy NpeV.
Th N N : s Teelx)' « ofqueyzo]

e  Conormal bundle Yix is the clual of Y/¥ - The fibre a+ pe VY is p X ooyl =0
The (onormal bundie @s twen 6  swobundie  of (TYX)°ly.  (exercise 4o show wis).
Considev Py loaal defining functions oa  Ux CX.  Consider dfulyque =0 since ¢ vanishes bur (dfa)p does rot

\ .

vanisw  Fo in (TpX) ° Npe YN Ux (since non singuiar V).  Hence dfa defines a (ocal never aerm holo  section
%

of Nysy -

Recal) can ink of ¥ as a divisor, Which gives rise tv a e bundie with tansition funetions Yap = f.%
of [v].
The twmnsition functions  for N‘l;x are qﬂﬁ = pr = q’ﬂp-l . To see this,
05 dbx = d(Wxp Pp): d(Wap) &p + Vopd(fp) . fp vanishes on \OUxOup , so
* wepd(fp)
Thus sp dFp = So dfa I Sa= %up™ Sp.  and [‘1]!1 -4 N,}; is  holhmorphically  &rivial.



-1
Recall:  have proved Adjunction formula  T: N~|/x‘ "(['1”1) : ['1“1

It f«is a local defining funcion of 1 on Ua, +hen  fu exiends +to  local C(omplex (oxdinades (wiog) on U«

i:«, cﬂ,--- G,.} (using Y is a nonsingu\ar hgpcrsurrace) . These Qz,--- Gn make sense as local cooms on Y

Any  holo (ocal section of Kx on Ua s Wdfqg AWy, x , where WYyt is an (m-1)-4dorm , j.e. o local Section of

Ky (pulled back ome X via the pojection (£,8) = &)

) o« o ()
0n  UxNUB, we have Q(M = F‘w (% ), ad  £4 = Gpa (c,,,s‘ ‘) fx  With G‘P“(o’ gt )= “’pa(g .‘)
a tronsition function of the holo line bundle associated with Y as a divisor.

we  find
K ly = N“{/\( ® ky.

This 8 the Adjunciion fomuwia I ky = (Kx ® [’1]“\3
We can use 4his 4o determine Ky for  hypersurfaces in C®", moce generally , many projective  manifolds.

The Canonical bundie of CP"

BXI
Coords = Creiei®] ity nhoods : Uo = %"’*d ¢ eet ; Complex \ocal (oofds: Wi = 5 , izy..,n .

Can write a wmem section of Kge™ over Uo:

dw, dwa
: ="' Ao A=
w w, Wa

Define 4 * T3j=0} ¢ €P" . Comespnds +o vanishing of Wj inour complex coords. Then  cClearly over every Such ()z,...,n)

\nupup\ane, ouf  Mek section wil  have a poe of order I Hence ord-“jw= - foc j= ... m.
3 ~ e .
Rgain, Uj = T 2#0} , can write (ocal coords Wk = 3y . F#j. Then the selatiocn  between local coods is
N,
wi s i*)
Wo ito
wi s oA
J W
dwi dw; dwo . i dwj _ dwo
Then w; ° “‘T. = ?. with i) si%o and w) T we . Substtwling inte fermula  for w:
) d_a" YA d—'?’"
we (00 T A e A
i
Thus  #here are  nd Simple poles, One Qalong eoch  hyperplane H; dor ic0,...,n  Bat since we Wnow R) iS5 Q ynero

function on CP" ( asseciated divisor s prindipal | i.e. © unit in Div((t!\’“)) , Yhen any hﬂpup\aus i are linearly

equivalent . i “Hj in DIWECR"™ N i,)- Hence we con  tnink  of +his as one pole of order n+l. Therefore

K(lf" = [(w\] = [-(nﬂ)’\'\] s (9(-n-l).

Similar  question in example sheek, wusing Qb in Ex2. as O(4) =[-He], mero section is (ocally gwen by slua 2,
3
:luj * To. Ss ! Simple pole.



Blow -Wp

p) informal dén.

Consider @ polydisc ACC" Qb 0. Write +he blow up of A a3

A= lGaw eaxce™ : ajwy= 2w vy !
Claim: & is a complex Wanifold.
ﬁ\
This  condition W) 2 YW soyp  that T Wies on  the line defined by e  point w of et j wy .
. n-t net
Charts:  for  €ath  gandard chart W) ¢ Wi CER'T 2 €7, pw
A ~
hj () € (Bxu) A& = (hjlw, %))
Stcaightforvard  cheth that  these are  ell defined on overlaps.

Definition: o : A —A ; (W= 3 5 caled the blow up of A o+ 0.

Observe A\ mapped  biholomorpwically oats A\ 30} and @' (0) 1} ce™ eosy check.

~ "
Infocrmally, 4  peans lines thugh 0 in A are made distinch

Remark -

. The blow up is keivial in dimg , n=L

. - n - . ~ n net . ~“
let A= €. Then +ne second prijection S o map € = CF reavizes  O(-1). The charts of €

Correspond  to local  4rivialisavions of  ©O(-V).

onto
Can generalize 4o W manifods, say X Consider =x €X, WC X o coord polydisc with Chart ®:W > ACE"

with * € W and  9(x) =0

Pur X = (x\323) Vg A identifying A\a'(0) Y w\$x%. We obtain 4 holomap T: X — X | called the

bow up of ¥X ar .

We call M ' (%) = E 4ane exceptional dlivisor . T+ is bihos to CR®"" | and makes sense as a hypersurface in X,
so € € Div(X)

Proposition = [E]|c = ().
pf: in local coordinates near €, we have €n (A xuj) = 3 (2,w) @ '*”‘! . The +ransition funciions are
wilvw = 35

which Or exactly the transition functions of O



~

lemma: X s independent  of the coordinate charr .

pf:  consider ¥ = H(r) (% previous Coocds)  new complex coordinates an X . We dlo need 4o intreduce
new W coords .  Thinking  abour i , the role of the w's are  lines  thmugh  the Origin in #he polydisc, which we
con @m '«denh'F‘ as  the -(-qnsen} space at the origin of the polydisc: Hence qu' are Coordinates of o rangent
i 24

W:,' = 2%, (‘) w,

Then we have O commutative diagram:

Claim:  F(2,w) = (2',w') as defined abowve s biholomorpwic.
Special  case: . 22
. . . . . Kk . € - LYY
Suppose Fis linear, given by [AJ] € GL(n, €). Then i wy! o E A% R % hj we = f'—. ARG Tewk
: q,j'w;'
Thus b bihole and diagram  commutes
i = st . . .
Now  wlog  assume w; (o) = J (complex Jacewian is  idemtity).  Then W) T w; ¥i. 1In

local  coordinates,
K (05 defined before)  have

L
Wieoos Jueeeowa, £5(2) = 5 + higher order rerms

(using ¢ is complex anagtic).

Thus  (dF)p = identity of tangent space YV p & A

By inverse  mapping thm ((omprex voviables) ,  F  biholo in Swme
ohood of p VYPeE & D F bihole.

]

Proposition : let o ; X be the blow up of X o+ a ptat «xeX. Then K = f‘(Kx)O [(n-l) E]’ where
L dim(x)

proof: Assume Kx admits hontrivial mero  sections . So le¢ W be G mMew nontrivial (n,0) ~form on X.

Zens and poles of pullback o¥w .

oway fom E, 2eres and poles on X are biholemophically related to Hhese

of w with ine same orders.

Near X €X, we have in local cooms w: £ dx A--AdRa, £ holo (mero section), j.e. =0 In tocal

Coords on W4j
°'|uj (Ve Yne, 7)) = (v, ., T 2 Vva)
J*™ positien

lequivatent 4o  firsk local coord way we wrote ¥, but ot RXQcHy the same)



s otw = (.l:oa-) d(2v) A d(v2)A-.. A dxAa.-.- A d(Rva-)

J pos.

= ($e0) 2™ dui A ndrnndva by product wie and Gntisymmetny.

. "
Hove On eXtra xerm of order n-1 , along E OU; = 3 x=0} . Pakching along all j'S, this gives us the

proposition. |:|
Definition: ¥V complex manifolds X,  define alX) : = - c(kx) , +he “Fiest  chern class of X"

Corollary : a(X) = e¥alx) - (na) o CED

Remark  ( f¢ iopologisks) When dime X =2, then deg((E)g) = -1 = fE & (CE)) = E-E ,ine

el - intersettion humber

Blow up as a Connected Sum

let ™M, and M2 be Smooth real manifolds With dim M, = dimMz2 = .  Chose A point p, € M,, pz €Mz and
take charts Y - Ui ¢CM; = R™ near Pi, wlog im(Wi) = Be = <2 XER™, \\x\l<3}.

L 2 L
Define 0 map by 3:7%E€ Ticnamcelcs, — 0 €11 <uxncal CB, a diffes of a spuerical shwell.

Then

turn swell
A —%

inside out-

The (onnected sum ot M, and M2 at p,,pz S

M, # My i (M.\ ‘h"(\\xlls'lz)) J ( M2\ @ (an <)

)

9;'e50,

Two  manifolds connected by o  tubular  region diffes to s x 1
This s independent of ¥ne Charts ®, ®2. IF we oassume that M, ond M2 are both oriented and ®,
preserves  the ocientation, P2 reverses aientation , +hen since 3 is an oientation  reversing  diffeo (easy 4o see),

wen M, #M: s odented with Oppropriate choices of Osiented  aHases for M, and M.

Proposition : let X be & (omplex maritfold 0F dimension n- Then 4ne  blew up X oF X at x €Y s diffeo
(as a smoh real manibid) X # CP"™ ot x ond ony pointin CP" , where CR" is  the underlying

feal wmanifold for QIP", bur  with orientation reversed from Hhat of the Complex Steuctuce.

it n odd, conjugate each coord vewemes aaemtban, SO Your [T athwally  wuat yoy drak i+ is.
put it N etn, cnugake aeu £ o bmes ad.'l you  botk o game Mewkation, S rer ke oy jdea.

P

By ¢ n we Jusl huam aewsatar  rewventd,  put y nadd  ten i3 Caguguie



proof:  Wlog  assume X= A €C" apoydist with sufficlently large radius and 0€X  the blow up pont. (can
just  work in @  peignbournced Wl subficient radius).  To Show : A s orientation - preserving  diffeo marphic o
CP"\ (word bal), ihe wpall that we're going o blow up.

In local  Coods, A = i (2iw) € Ax €R™' @ 2jwj = 2jwi Vi) }

EF" = 1[Te:2) | aeeq, 2€C”, |2+ W 40}

UsSing a coord chavs @: u = i Cr:2) } —c", 1:% F> T s a4 holo orientation - reversing chart on ar®

Consider (]:_n?" \ @' ( n=n <) = f['i_. 2 |l"*“>l?.“"} - The gluing  woap Ffor +the  connected sum:
K
- — diffeo e
Y: (To:2) € er"\k — e ['_559) T: E™\e3 > CP" prgjection map

——— -t
eg” (914

€ ¢ '(uzhe2) c &

where <: A - a blow up map



3. Hermitian and Kahler  Geomeiny

Definition: o Hermitian Mekic 0n & Complex  Manifld X is &  (positive - dekiaite)  Hermitian  inner preduct b on the

(fibres of ) the holomophic tangent bundle, i-e-

]
h(p) : 'l,’: xT, — C with smoth dependence on p€X,

i-e. N smosh cecrtens A,3 of 1"°X, we thave W A,B) € C™(X). (€ complex)

In local  coords, w= W (3) daj dyj ) with  gmoo  coeffictents  hij (3).
i)
]
= is a netakonal
J ‘ :‘M\VGVIHM

2 .2 Y
I A= Z A; 9% , BT Ji Bj 33 , +hen W(A,B) = % h'-j AiB;
[ [

Prposition: There  is a  natural  equivalence  between

Hermitian  metrics on X , and

J- invariant  Riemannian  metrics 9 ©°n  the underlying real wmanifld of X, i.e.

3(”\,38) = 9(A8), where 7€TCEndTX®) s the almos Complex  Structure.
Y . .0 .
Proof : Recal € €E TxX — e -iJe € Tlx X is a linear isomorphism  of real vectwr spaces. Precisely,
Y(3e) = i¥(e) . This implies that, given h as aboe, can (onshuct a Riemannian  meiric

S(u,v)-_-. ‘; rRe ( (w-iJu, v—ilv))

Since  W(iA,iB) = W(A,B), then g9 (Ju, W glww).

For  +he (Converse, glven 9 o J -invariant Riemannian metric , we can exvend g to a Hermitian h on

Tx ®r €, given by h(ae, mv) iz 249 (uv) V WyeTx , 2,4 € €. Then restrict to the Subspaces
T'PX € TeX @€ , which  jnverts  the  Pirst  constuchion. |:|
2 1(2 2 2 2 ) ( 2 3, 2 32
In coocdinates, 9¥j 2 ( 2% '3yj) 9 ( 23j s+ axe ) 3 |2y ! 391-) *zhew (“J' ’ %
7T ‘avaviance

Therefore we can  use the concepts oF  Riemannian  Geomety  for  Hermitian pani folds (o Complex  manifeld

equipped with a  Hewmitian wewic) (X/b)  yia e T -invariant  Riomanmian metic (e ‘Re" of h).
| (+)
Proposition / Definition : Define wlun) = 73 Imh(u-igu, v-i3 ") - Then W s a real (L1) -form , caved

the fundamental form of h. Furthermore ,

wluw) = g(3u,v)
In fock, any 4wo of w, § and I delermine the  remaining one.

wen" © wis J-invariant : w( 3u, Iv) = w CwV).  (other dorem types  have different s from ths
s

pm(‘:

In &), +the Tu,Jv in LHS qre (onverted 4o  mMulliplication by i in  RUS.  Since h s Hermitian,

invariant and  So the expression  follows.



Tor the  expression wlwv) = g(Iuyv),

Consider - % Imh(u-idu, v-iJv) = ';_ Re h (.‘(u-i:‘m\, veidv) = i Re h(Ju +iu, ¢-i3v) = 3(,“",)'

Fiat fackr D
X3

Last  part - exercise  (easy)

In  coods

9-=2 l};-_ (Reh.,) (dxidxy + dy; dy,) + Im(k.J) ( d=;dy; - di.dg,))

as 3(33;.-"?%3) : 2Re“(az-.;'5°'z»j) : 2Re(~ih(:1;,‘%j))

3 2
2Imh ( 23 73y

Lemma: In  complex local coords, w =i Z hij di; AdJj [nvaeud . wdy
vmple
"J gmivat-/‘lﬂ/l reol Arpn.

proof : pdagady; T i dui+t idy;) N (dwny - ;dgj)
= i ( duindxj 4+ dy;ndy;) + (dxindyj + dajady;)

2 2 -
Then w(%u-:_,,-) s j(a,,-,a,j) = 2Re hij .

2 4
N(‘blxl-ia_‘-lj): 3(33.1 axJ s -zlm“‘j:w(%j'%i)

Thus  Zihj dv; Ad3) = T hy; o daiAdl; o+ 3 ZRe(h;j an;m%;)
1)

i) ' <)

= 2 2Re k.J d:;l\dsj - Z. Z‘Imh' (d:nf\dzj + dg,ndy,)
i) i€)

= 3 2 hip di Adaj D

ey

From  our  work, ¢ follows thar Hfor an ae TY x we have - wla,a) >0 {or oo . Call any real
b ) Y

(LN- khem o st —ie(a,a) >» N oac 1¥°\9e% a positive (L1} “form,  Which e dende by T >o0.

Furiner ,  the 1% chera  class of Complex \ae bundle C say, ¢(L) »o {ff C,(L) s represented by a

(closed) positive (1)) dorm.

Eg. it X has (X >0 , +then X i5 called a Fano manifld . I ci(X) =0 (rep by exad foren ) , Anen
X i called a Calabi- Yau manifld- £-g.  CPY isS a Fano manifeld

€9 complex Tomsis & calabi- Yau manifold.



Any  positive (1,1) - form s equivalent 4o Q  Hermitian  etric  on X.

denv. of f is an ."Mjgm—,‘.:c nwear map ab o poinb.

It &Y =X is a holomorphic  Immersion (Y s an immersed compiex submanifold). Then 6'5 s a well -defined

C
Riemannian  metdc . (1.e. d®)” : T;'. - T":..,) X injective ¥ 55‘{\.

and g is J-invariant so dfe 73, = Jq odf  converts al- mp of Y to one OF X. Therefece, a

Hermitian metnc is induced o0 any immersed  (omplex  Submanifold of X.

I#  (xh) is a Hermitian metdic, NCX a submani kid, ¥wen Y inherin a  Wermitian mettc by pulling back

via  the imwm ersion -

Locally, Y is given by the vanishing of n-K coords - % Rear oo T 00} ( dim¥: x and dimX=n).

Then  the  imwmergion §:N =X s Py (Rl R, 0,000 Therefwe

L3
lemma:  the fundomental fom of  §¥h is Hfw= i X hij daiad3y

i,j:l

( sum  only up 4o k).

Can  equivalently  give a Hermitian  manifld as (X, w) using the pundamenal  focm
9, 3, w delermine +he +hicd).

( remember +wo of

Definition : @  Hermitian manitold (X, w)  with dw=0 is called a Kdhler manifold. Then W is called a
Ka hter fotm  an X, and h is a Kkahler  yeiric
Examples:
I =
0. ¢" , h: E’}“‘j“"*j the Standard  Hemitian meidc  (real part is Euclidean metric)
w= 3 T Ay AdT; - T dujady where 2z iy,
J 3 v
Which is the Standard symplectic  form  on K"
@“ n N [}
1. d) e  eteic in O descends to any Lomplex  toms /A , Ar a discrete lattce in C.

b) 0n a Riemann Surface, Gny non- vonishing 2 - foren (compatkivle  with orientation  of the (ompiex  Shucture).

By dim reasons, i mwt be a (L,1) fm and closed.  Tis auo posivive, 20 by (ompatibility.
Hence evewy  Riemann surface s  Kahler ( wirn any  Hermitian  metric)

2. T: ¢"\1e$ = €P" | C[e:---+38]  (oocdinates. Considec V)  Gn  affine Wyperplane

Nj = i re ™ - ")"& an affine  hyperplane

Then  set T (V;) =:uj c €P” as uswal.
?

binoto

Then \ed w = ;_"ﬂ- 33\09(\\;\\2) € n“"’(v;\
Syandard Euc“dean Ao o4 V’

This  defines a reat (L)) form on UF ,  siace TW: V) dUj i & biholomorphism.



x) -
Chonge of local Coord jnates e Vj; > freVNk, £ = '{‘" iS @ hoo nonvanishiag Punckion o T '( \'I(Vj)ﬂ\'l’(\ls)).
0n +he intersection,
i = - i =
in @ loglfal? = 7525 (log laU® 4 wg £F ) = @ & 3z @310y (¢F)
\/\f\_’,
£F = new? claim: 4mis = 0.
Now Consider
i a% . L S(fF
in 3 \og (FF) = ;oo SCE) L
33
?f -0
= g =
Bur ? ;_)-l: = - 7(”) = 0
X3 3
Thus w is a weh-defined forn on QCr°™.
Mso, ¥ T € Wne) , T induces o map T: CR" = €P" called a projRctive  transformation, and
tPw=w
Lemma / Detinition w>o Thus W i the  fundamewal foim of a Kihler metric on CR" , Caled yhe
Fubini — Study  metric.
(W(nt) symwmerny)
proof: By our above remark, i+ suffices o Chech  the posilivity ai oee poin.
i 2 X S y X
Then W ly, = 2w log N2ll” = 20 33 \°9(1\‘ * .??\\“’)
0 coodd s
= sz PIRA e d::'
IR RASES]
iy (a\-,ui'; ) I 3 daj A T3jdT;
= w = ] _
Ve Ty (HZ%’)\}Y‘
we can JIA§ Check po;iﬁvits a+ e.9. e °:°""-°], i-e. EYELIE T BRI N Plussmg in,
B ﬁ( Z d\:‘ A d{))
Which is  fusd example 0, which i3 pesitive.  Then by symmetw, its Ppositive eveywhere. D
3. Given a positive (LD ~ form representing a(X) Hfor a Fano manifeld X ;) we (on make it nde a
Kahler wanidld- In parkicular, CP"™ s TFano (sheer ).
4.  Proposition : Eveny  Complex Suomanibld  of @  Wohler wanifld IS kahler Coy pulling back  ka Wier form)
CoroMawy- eveny projective  manikld is hKahler.



Detour to Riemarnian Gieometry

If (M,9) is an orented Riemannian manifld, dim gM=n. Then VY2 eM can use Gram - Schmidt ¢
tonstruet a \ocal orthonormal cotrame  field Wy, -, wa- Taking +we wedge gives the volume fom:

Then d“‘ﬁ = W, A---Awg ponitively oOdemded IO dlvolj compahble W/ it tebiiy,

is independent of choice of w;'s and is well -defined, dw\ae-ﬂ.‘(v\l
This is called twe volume focn ofF (M,9).

Now ler (X,n) be a Hermitian manifld, Wz T hid¥@dy;  Let g pe vhe Cowesponding Riemannian
\,’
meie, i-e.

g-= 2Reh = 2 I(( RCh\})(KQ d%“di)] —('Im 'I\tj') (IM d‘-\_-\d{')))

w(-,Y= 93(3-,°) ine twndamenal .
Near each <x€X, we can find '* adaped” local orthenwmal cofmme Feld W, €, ., tn, B0 Be, %X
WA . gy where €e = ~Jwe ,and Wr =l€x VK. Then witite,..., wa4itn is an odhonamal

totmame  Field  we. h R (TRX)"°.

h = -2'- Zn(wg +ii;\0(wn-ii\g), g = T—(Wka"‘"" “‘OE‘)
k
N-8. T( we+ iTe) = -€k 4 iwe = 1 ( wetite) | Tuus  we+ e iy a4 (1,0)- form.
Hence w = E(wv. @tk - € @uwk) = E_ Wk A EZx (antisymmetric )

In partiomtar, w" = N1W AE Awah€2t--. P walrEn. Thus we have  Shown

w"
Proposition - dvols = m is +he volume fPom of a Hermitian maniford (X, w).
Consider a (omplex submanifoeld YCX ,  dim¥Y=d . Then W'\, is +he Pundamental form of the jncluced

Hermitian mebic on Y-

d .
Then W' is the volume fum of the (orresponding Riemannian mebic  On Y. Oblain  Hllowing Comliany:
d!

Wirkinger Theowem: for each (ompact complex  submanifold Y of & Hermitian manifld (x,w).
\
T - d
vol( Y1) 4 S'y w
Suppose  that X is Compact amd hahler , i-e- dw=zo, (W)€ H4e(X). Then

‘fx w" = ntvel(X) #0 (topotogically ¢ [wl¥", £x15 ¥0)

compiex. dim.

oF X.
So [w]l #0 by Siokes +heorem (cannek be exad); and 4er +he same  reasen, Cw®) %o \le,--.,nl



Ir Y s a Compact  compiex submanifod, (i.e.

is a closed Submanifeld), then [Y) € Ha( X, R), and
J‘v w? = dive(y) o

Therefore (Y3 F0  in  Hagq( X,R) by application oF Stokes ' Theorem.

Consequently, tahing X = CP", we find +hot
e YCX a pmjective wanifeld | then (Y] #o.

Hod 9e Theony

let ™ ve an odented Riemannian manifold, dimRg M =™  with Riemannian mehic o

Then +he inner product on  TY M defined by the metric can be extended tov +o the r*h

eXterios power
v .
ATx'M , 2em so that

1S aGn  octhonormal  basis (wi are a (ocal octhonormal cofmme Fietld  awund =« ).
In partiwtar, dvolg = W A... Awam  phas hoem 4.
® ¥ m-p =
Definition = the Hodge * : N T /M — A T M 4§ qa jrear map satiskying
XN¥P = L, P, dvelg Yape ATTAm

l-lodge % & uniquely derermined by ¥(wiheco Awg) = Wi, Ao AWy such +hat

Lo ie e dmee ) ™ 3o, m)

In parnentar Woeersie, diyeee ey Jme-v ) \S an even permutation

\ e o m

note : dvu: = 1, | — dvolg

Remark: can exiend ¥ Smoorhly to ¥ : L7(M) — ™ (m)

Now et (X%, h) be a Hermitian (omplex  manifold  (dim ¢ =n), andg the (Corresponding  Riemannian metwc,

invariant under the almost  (evplex sbucture  J.  Real dimension M= 2n, and o

.27 = n" (x)

Wwe have as befce W, S, ..., Wan,En

Then we saw (1,0) - forms

an adapted local coframe feld (Map\ed 5 Jwk: -€k, JEe:we VK

are spanned by < wr t i€k Dk, and (N by { We-i€edgzy,..,n.



h s the Hermitian exiension of 9, Seo
. 2
|(wh "iih)l\"' l\( wg'-hig‘,) [y (le-;gh) A...A(w'_% -iigt)\fﬂermibian norm

z'*"l

each ferm has norm 2, amd there ar® P42 factors.

AP:Q—

We have the induced Hermitian inner product on T'X Voeq. ( stil denored by h) - We can exrend ¥

C- \inmrly .
0 (AP1*%)C = (A" %) €

lemma: N cComplex odifferential Y- forms o, p, we have
nep = <%, B>, dvelg
1.7}: Stans with o ,3 real and then wulkply by complex (onSkanty.
IC w, p are real r-foms ar x€X, A, meC, then
{3, up>, dwlg = ALLw, podvelg = AL A ASp z AX AP
Hodge ¥ is real opetatbw,
o commutes With Complex mult.

lemma now follows by finearity of Hermitian prod, wedge and ¥. |:’

Corollany - % : _Q_P"" (x) — nn%, "-P(X)

pte
Corollary : x¢ ‘_n_""(x) = (1)

Definition dbt:= -vdw : -ﬂ.'(X\ — nr-‘(x)

The Hodge laplacian is A = dd* + d¥d : Q'(X) = a"(x)
Bah d* and A evend & NT(X)E

A is alse hnown as Hodge  Laplacian , Laplace- Belicami operator
9 9 L * )
I X= C" with cuclidean metic, then for 0- forms, A= - q._Z 3a; oy, - Z(,a, t ’8_,"
v _ - =% _ _
Detinision: 9 = -%3 %, 3% : -%3x

Thus ' : 0% (x) » N0
3% : aP¥(x) > N v(x),

And  g¥ ,.n."‘(x) = T+,

ten (%)% =0 and (3*1*:0 | and T . -3V @¥) *< o

’



Definition :  the LZ%- jnner product <MWy, 3 J‘x<§,"l7h dvolg (assume Rds  Rinite)

= [, sren

r 9,1’( . ( smooth  functens
makes a'(x) , N X) job o pre- hilbert space missing  4hat they do not fwm a complete spae in LY awm).

"(0¢ P (%)
observe n X = & N Orthogonal direCt sum Wrd-  Num at a poiad ia X and Qlso in +he L® nom.

pra:r

=¥
Prvposinom '3*, 3 are fomal adjoists o D, I  wri- the L ianer product,

i-e. j‘x < 2%, > dvolg = J\X < «, ‘B‘p) dvolg

,yx ( '5 q,P’dVO\’ < ,f < o, ;5'P§ dvo\, .

Y compacily Supported o € nPx),  resp -flp"-l(x), and [} € P x).

Proof: Do second of relations. We wuse Stowes theorem :

Ix <‘$u,r,> dvolg = j‘ S« l\‘t(-s = Sx (S(q/\*]—s) - (-\)Pﬂ.-lql\at_P)
x L~

type nym-1
h=dimX

(«ndp) = d( anrp),

“w
°
(Y]

by Stohes, = (S wndkp - Iy Sp

j; ® Ny (-¥awp) Check the sign  Pom type
: \ri <°‘1 5.F>dV°|s
The otwer identity s similar-

Corotlary:

1) Jx <do,p> dvag = Ji ¢ o, dTp> dvey

2) fx < d¢ o, P3 dvo\, z J X <°"(d()"§>d‘“’|s - exercise noding (“g)* = _i(st _;t) s - wdba
Debinition @ Ag = 2% + 3% , A3z = 23" 4 3*3

Then b,,4A5 ) - a*(x)
and b the abowve, 4, A; and A3 are  Hrmay self  adjoint

N8 A in general does mot act on (p,q) - Pums



r

Dekinition: an ¢ -dfem y is  (d=) harmonic , denoved & € 3(()(), W Ax=o
A (p,g) -Fom is 3 - harmonic o € st‘”" (O i Ayx=e
g (p:g) -fum is - harmonic a € 'ﬂa"“(ﬂ i# Ay« =0

Proposition:  Suppose a  Hermitian  n -manifeld X ;s (necessarily) compact: Then

Ayot =0 it 3 cp and 3*0( =0
Ao zp ife dot = 0 ond dfa=o

Proposidion : 6 = jx‘Ai o, %> dvelg j‘x (( da.3ad + < ', 5'd>)

!

P
_ = -3 =t

Basic amllj{is soys =  da,dw Y= £d«,3k” = 0 D

A; and 4 are similar.

2quiu ic]

Hodge Theorem
Let (% h) be a compact Hermitian manifold. Then  Yr, H () . Vg 3{;"' (X) ore PRinite dimensional

and  then L® - orihogonal  direct SWM  dectompositions
N = U 8 daT(d e dvar(x)

. - - - Y \
nP:‘l.(x) - ﬂ;‘-(x) ® _anh‘l '(x> ® ?t _QP Qe (x)

assume  this without proof  (requices  analysis of PDE )

Dy Ay x ( hence suffices & \oox ar  Gun A3).
Appli cations:
Proposiion 4:  Assume X is  (ompact and Hermmitian .

(1) o«e H'(X) = T enz () is an R -linear isomophism  of vectw spaces

. .q [ . .
@ i «e d{’; () = ToleH Q) s 8 C- linear  1SSMOPhISM ot yeckor spaces

Exercise * o see online nores on  PT M diff geo -
P.q - . [ ZX X ) - . Piqv(x)

Define h (X)) = dimg H () = dmg Y » the Hodge numbess of X

In pardowar, if 4o,  Hwn WP°(X) = dim ( holo- p-forms on X)

n= dimg¥X , 3hen h"°(X) = dim ( holo sections of Canonical bundle Ikx) fP,(x\ is the geomewmit genus of X
!
9 £ geomebac, ot
Forn  mebvic

P.q n=n-p — _ n-p.,n-9
A o € i (X) = s« € HE (%) = o * *¥x € j‘fs (x) & a linear isomorphism



